This repository has been archived by the owner on Nov 21, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathutils.py
363 lines (332 loc) · 13.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import base64
import calendar
import json
import math
from pathlib import Path
from io import BytesIO
import re
import time
import traceback
import uuid
from PIL import Image, ImageFont, ImageDraw
from hoshino import R, aiorequests
from . import db
from hoshino.typing import Message
from .config import get_config
from base64 import b64decode, b64encode
save_image_path = Path(R.img('AI_setu').path) # 图片保存在res/img/AI_setu目录下
Path(save_image_path).mkdir(parents = True, exist_ok = True) # 创建路径
fontpath = Path(__file__).parent / "fonts" / "SourceHanSansCN-Medium.otf" # 字体文件的路径
per_page_num = get_config("base", "per_page_num") # 获取每页图片数量
def pic2b64(pic: Image) -> str:
'''
图片转base64
'''
buf = BytesIO()
pic.save(buf, format='JPEG', quality=90)
base64_str = base64.b64encode(buf.getvalue()).decode()
return 'base64://' + base64_str
def pic2cq(pic: str):
"""
图片转CQ码
pic: base64编码的图片
"""
return f"[CQ:image,file={pic}]"
def text_to_image(text: str) -> Image.Image:
font = ImageFont.truetype(str(fontpath), 24) # Path是路径对象,必须转为str之后ImageFont才能读取
padding = 10
margin = 4
text_list = text.split('\n')
max_width = 0
for text in text_list:
w, h = font.getsize(text)
max_width = max(max_width, w)
wa = max_width + padding * 2
ha = h * len(text_list) + margin * (len(text_list) - 1) + padding * 2
i = Image.new('RGB', (wa, ha), color=(255, 255, 255))
draw = ImageDraw.Draw(i)
for j in range(len(text_list)):
text = text_list[j]
draw.text((padding, padding + j * (margin + h)), text, font=font, fill=(0, 0, 0))
return pic2cq(pic2b64(i)) # 图片转base64并转cq码
def key_worlds_removal(msg):
"""
replace() 方法用另一个指定的短语替换一个指定的短语。
如果未指定其他内容,则将替换所有出现的指定短语。
"""
return msg.replace('以图生图', '').replace('以图绘图', '')
def isContainChinese(string: str) -> bool:
for char in string:
if ('\u4e00' <= char <= '\u9fa5'):
return True
return False
async def save_pic(image, pic_hash):
error_msg = ""
pic_dir = ""
try:
if db.get_pic_exist_hash(pic_hash): # 检查图片是否存在
id = re.search(r"\d+", str(db.get_pic_id_hash(pic_hash))).group(0) # group(0) 返回匹配到的完整字符串
error_msg = f"上传失败,ID为【{id}】号的图片已存在!"
return pic_dir,error_msg
datetime = calendar.timegm(time.gmtime())
img_name = str(datetime)+'.jpg'
pic_dir = save_image_path / img_name # 拼接图片路径
image.save(pic_dir) # 以给定的文件名保存此图像。如果没有格式指定时,使用的格式由文件名确定
except Exception as e:
error_msg = "图片保存失败"
traceback.print_exc()
return pic_dir,error_msg
return pic_dir,error_msg
async def check_pic_(gid,uid,msg,page):
error_msg = ""
num = page*per_page_num
if msg == "本群":
msglist = db.get_pic_list_group(gid,num)
elif msg == "个人":
msglist = db.get_pic_list_personal(uid,num)
elif msg == "全部":
msglist = db.get_pic_list_all(num)
else:
error_msg = "参数错误"
return resultmes,error_msg
if len(msglist) == 0:
error_msg = f"无法找到{msg}图片信息"
return resultmes,error_msg
resultmes = f"您正在查看{msg}的第【{page}】页图片\n"
resultmes += await img_make(msglist,page)
return resultmes,error_msg
async def get_image_and_msg(bot, ev):
url = ''
for i in ev.message:
if i['type'] == 'image':
url = i["data"]["url"]
if url:
resp = await aiorequests.get(url)
resp_cont = await resp.content
image = Image.open(BytesIO(resp_cont)).convert("RGB") # 载入图片并转换色彩空间为RGB
return image, hash(resp_cont), ev.message.extract_plain_text().strip()
else:
msg_id = None
for i in ev.message:
if i['type'] == 'reply':
msg_id = i['data']['id']
if msg_id is not None:
reply_msg = Message((await bot.get_msg(message_id=msg_id))['message']) # 将CQ码转为字典,以便提取消息内容
for i in reply_msg:
if i['type'] == 'image':
url = i['data']['url']
if url:
resp = await aiorequests.get(url)
resp_cont = await resp.content
image = Image.open(BytesIO(resp_cont)).convert("RGB") # 载入图片并转换色彩空间为RGB
return image, hash(resp_cont), ''.join(seg['data']['text'] for seg in reply_msg if seg['type'] == 'text')
return None, None, None
async def get_imgdata(tags,way=1,shape="Portrait",strength=get_config('NovelAI', 'strength'),b_io=None): # way=1时为get,way=0时为post
error_msg ="" # 报错信息
resultmes = ""
# 设置API
api_url = get_config('NovelAI', 'api')
token = get_config('NovelAI', 'token')
try:
if way:
url = (f"{api_url}/got_image") + (f"?tags={tags}")+ (f"&token={token}")
response = await aiorequests.get(url, timeout=180)
else:
url = (f"{api_url}/got_image2image") + (f"?tags={tags}") +(f"&shape={shape}")+(f"&strength={strength}")+(f"&token={token}")
response = await aiorequests.post(url,data=b64encode(b_io.getvalue()), timeout=180) # 上传图片
imgdata = await response.content # 获取图片的二进制数据
if len(imgdata) < 5000:
error_msg = "token冷却中~"
except Exception as e:
resultmes = f"请求超时:{type(e)}"
return resultmes, error_msg
try:
msg=""
msgdata = json.loads(re.findall(r'{"steps".+?}',str(imgdata))[0]) # 使用r''来声明原始字符串,避免转义
msg = f'\nseed:{msgdata["seed"]} scale:{msgdata["scale"]}'
except Exception as e:
traceback.print_exc()
error_msg = f"获取图片信息失败,服务器未返回数据:{type(e)}"
return resultmes, error_msg
try:
img = Image.open(BytesIO(imgdata)).convert("RGB") # 载入图片并转换色彩空间为RGB
imgmes = pic2b64(img) # 将图片转为base64
except Exception as e:
error_msg += f"处理图像失败:{type(e)}"
return resultmes,error_msg
resultmes = f"{pic2cq(imgmes)}{msg}\ntags:{tags}" # pic2cq(imgmes)将图片转为CQ码
return resultmes,error_msg
async def get_xp_list_(msg,gid,uid):
error_msg ="" #报错信息
resultmes = ""
if msg == "本群":
xp_list = db.get_xp_list_group(gid)
elif msg == "个人":
xp_list = db.get_xp_list_personal(gid,uid)
else:
error_msg = "参数错误,请输入本群xp排行或个人xp排行"
return resultmes,error_msg
resultmes = f'{msg}的XP排行榜为:\n'
if len(xp_list)>0:
for xpinfo in xp_list:
keyword, num = xpinfo
resultmes += f'关键词:{keyword} || 次数:{num}\n'
else:
resultmes = f'暂无{msg}的XP信息'
return resultmes,error_msg
async def get_xp_pic_(msg,gid,uid):
error_msg ="" #报错信息
resultmes = ""
if msg == "本群":
xp_list = db.get_xp_list_kwd_group(gid)
elif msg == "个人":
xp_list = db.get_xp_list_kwd_personal(gid,uid)
else:
error_msg = "参数错误,请输入本群xp缝合或个人xp缝合"
return resultmes,error_msg
if len(xp_list)>0:
keywordlist = []
for (a,) in xp_list:
keywordlist.append(a)
tags = (',').join(keywordlist)
resultmes = tags
else:
error_msg = f'暂无{msg}的XP信息'
return resultmes,error_msg
async def predict_push(url,json_data):
'''
predict请求,适用绝大多数gradio框架
一般情况下推荐适用该方式请求数据
'''
resj = ""
error_msg = ""
params = {
"fn_index": 0,
"data": json_data
}
try:
resj = await (await aiorequests.post(url, json=params, timeout = 180)).json()
# data_path = Path(__file__).parent / "test" / "二次元化数据.json"
# json_save = json.dumps(resj, indent=4, ensure_ascii=False) # 保存格式化的json字符串
# data_path.write_text(json_save, encoding="utf-8")
except Exception as e:
error_msg = f"尝试推理 失败原因:{type(e)}"
return resj, error_msg
async def get_Real_CUGAN(image, modelname):
'''
Real-CUGAN图片超分
来构造请求并获取返回的重建后的图像
Args:
json_data (dict): 对图片编码后的数据
Returns:
str: 返回的json格式数据
'''
error_msg = ""
url = get_config("image4x", "Real-CUGAN-api") # 获取api地址
b_io = BytesIO()
image.save(b_io, format='JPEG', quality=90)
json_data = ["data:image/jpeg;base64," + base64.b64encode(b_io.getvalue()).decode(), modelname, 2]
resj, error_msg = await predict_push(url, json_data)
if error_msg:
return None,error_msg
result_img = b64decode(resj["data"][0].split("base64,")[1]) # 获取base64并解码为图片
result_img = Image.open(BytesIO(result_img)).convert("RGB") # 载入图片并转换色彩空间为RGB
result_img = pic2cq(pic2b64(result_img)) # 图片转base64并转cq码
return result_img, error_msg
async def get_Real_ESRGAN(img):
'''
Real-ESRGAN图片超分
'''
error_msg = ""
url = get_config("image4x", "Real-ESRGAN-api") # 获取api地址
b_io = BytesIO()
img.save(b_io, format='JPEG', quality=90)
json_data = ["data:image/jpeg;base64," + base64.b64encode(b_io.getvalue()).decode(), "anime"]
resj, error_msg = await predict_push(url, json_data)
if error_msg:
return None,error_msg
result_img = b64decode(resj["data"][0].split("base64,")[1]) # 获取base64并解码为图片
result_img = Image.open(BytesIO(result_img)).convert("RGB") # 载入图片并转换色彩空间为RGB
result_img = pic2cq(pic2b64(result_img)) # 图片转base64并转cq码
return result_img, error_msg
async def cartoonization(image: Image):
'''
图片卡通化
'''
error_msg = ""
url = get_config('pic_tools', 'img2anime_api')
b_io = BytesIO()
image.save(b_io, format='JPEG', quality=90)
json_data = ["data:image/jpeg;base64," + base64.b64encode(b_io.getvalue()).decode()]
resj, error_msg = await predict_push(url, json_data)
if error_msg:
return None,error_msg
result_img = b64decode(resj["data"][0].split("base64,")[1]) # 截取列表中的第2项到结尾获取base64并解码为图片
result_img = Image.open(BytesIO(result_img)).convert("RGB") # 载入图片并转换色彩空间为RGB
result_img = pic2cq(pic2b64(result_img)) # 图片转base64并转cq码
return result_img, error_msg
async def get_tags(image: Image):
'''
DeepDanbooru图片鉴赏
分析图片并获取对应tags
置信度取70%以上
'''
error_msg = ""
url = get_config('pic_tools', 'img2tag_api')
b_io = BytesIO()
image.save(b_io, format='JPEG', quality=90)
json_data = ["data:image/jpeg;base64," + base64.b64encode(b_io.getvalue()).decode(),0.6] # 阈值0.6,即取置信度60%以上的tag
resj, error_msg = await predict_push(url, json_data)
if error_msg:
return None,error_msg
result_msg = ', '.join([i['label'] for i in resj['data'][0]['confidences']])
return result_msg, error_msg
async def get_imgdata_magic(tags):#way=1时为get,way=0时为post
'''
元素法典绘图模块
'''
error_msg ="" #报错信息
result_msg = ""
# 设置API
api_url = get_config('NovelAI', 'api')
token = get_config('NovelAI', 'token')
try:
url = (f"{api_url}/got_image") + (f"?tags={tags}")+ (f"&token={token}")
imgdata = await (await aiorequests.get(url, timeout=180)).content
if len(imgdata) < 5000:
error_msg = "token冷却中~"
except Exception as e:
error_msg = f"请求超时:{type(e)}"
img = Image.open(BytesIO(imgdata)).convert("RGB")
result_msg = pic2cq(pic2b64(img)) # 图片转base64并转cq码
return result_msg,error_msg
async def img_make(msglist,page = 1):
num = len(msglist)
max_row = math.ceil(num/4)
target = Image.new('RGB', (1920,512*max_row),(255,255,255))
page = page - 1
idlist,imglist,thumblist = [],[],[]
for (a,b,c) in msglist:
idlist.append(a)
imglist.append(b)
thumblist.append(c)
for index in range(0+(page*per_page_num),per_page_num+(page*per_page_num)):
try:
id = f"ID: {idlist[index]}" #图片ID
thumb = f"点赞: {thumblist[index]}" #点赞数
image_path= str(imglist[index]) #图片路径
except:
break
region = Image.open(image_path)
region = region.convert("RGB")
region = region.resize((int(region.width/2),int(region.height/2)))
font = ImageFont.truetype(str(fontpath), 36) # 设置字体和大小
draw = ImageDraw.Draw(target)
row = math.ceil((index+1)/4)
column= (index+1)%4+1
target.paste(region,(80*column+384*(column-1),50+100*(row-1)+384*(row-1)))
draw.text((80*column+384*(column-1)+int(region.width/2)-90,80+100*(row-1)+384*(row-1)+region.height),id,font=font,fill = (0, 0, 0))
draw.text((80*column+384*(column-1)+int(region.width/2)+20,80+100*(row-1)+384*(row-1)+region.height),thumb,font=font,fill = (0, 0, 0))
imgmes = pic2b64(target) # 将图片转为base64
resultmes = pic2cq(imgmes) # 将图片转为CQ码
return resultmes