This is an official release of the Paper.
- Python3
- PyTorch
pip install -r requirements.txt
python train.py --backbone resnet --fold 1 --dataset_path /path/to/BP4D_dataset/
python test_BP4D.py --backbone resnet --fold 1 --dataset_path /path/to/BP4D_dataset/ --resume /path/to/best_model_fold1.pth --evaluate
if the code or method help you in the research, please cite the following paper:
@article{wang2024multi,
title={Multi-scale Dynamic and Hierarchical Relationship Modeling for Facial Action Units Recognition},
author={Wang, Zihan and Song, Siyang and Luo, Cheng and Deng, Songhe and Xie, Weicheng and Shen, Linlin},
journal={arXiv preprint arXiv:2404.06443},
year={2024}
}
@inproceedings{wang2023spatial,
title={Spatial-temporal graph-based AU relationship learning for facial action unit detection},
author={Wang, Zihan and Song, Siyang and Luo, Cheng and Zhou, Yuzhi and Wu, Shiling and Xie, Weicheng and Shen, Linlin},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={5899--5907},
year={2023}
}
@inproceedings{luo2022learning,
title = {Learning Multi-dimensional Edge Feature-based AU Relation Graph for Facial Action Unit Recognition},
author = {Luo, Cheng and Song, Siyang and Xie, Weicheng and Shen, Linlin and Gunes, Hatice},
booktitle = {Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, {IJCAI-22}},
pages = {1239--1246},
year = {2022}
}
This repo is built using components from ME-GraphAU