-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathindex.html
80 lines (63 loc) · 2.85 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>CSE512: Data Visualization</title>
<meta name="robots" content="index,follow" />
<link rel="stylesheet" type="text/css" href="http://courses.cs.washington.edu/courses/cse512/14wi/style.css"/>
</head>
<body>
<div class='content wider'>
<div class='title'>
<a href="http://courses.cs.washington.edu/courses/cse512/14wi/"><strong>CSE512</strong></a>
Projects
<small>(Winter 2014)</small>
</div>
<br/>
<div class='pub' data-spy="scroll" data-target=".navbar">
<h1 class="title">Visualizing Data from Massive Online Open Courses</h1>
<div class="authors">
Katelin Bailey, Jialin Li, Naveen Sharma
</div>
<div class="figure">
<img src="summary.jpg" width="100%"/>
<div class="caption">A snapshot of our exam view </div>
</div>
<p>
This project addresses the massive amount of data available to instructors of
MOOCs (massive open online courses). While some of the data is noise---students
who never intend to participate, or fail to submit the majority of assignments
---much of it is potentially valuable data on what methods and components in a
course are effective. It is, however, massive in quantity. We intend to use the
data readily available from Coursera to provide some exploratory visualizations
for a generic MOOC class, generally tracking attrition and success rates.
More specifically, we will enable professors, who upload their own data, to add
ress a variety of questions, including but not limited to the following:
(1) Comparing two (or more) instances of the same course: was change X in
assignment 3 effective? Were the overall statistics comparable?
(2) Tracking characteristics throughout the course, based on intro
demographic information. Do people who don't know recursion do significantly
worse on this quiz?
(3)racking the timeline of the course: when do people drop out? Can we
tell why?
For the purposes of this project, we will be prototyping from Dan Grossman's
data, and working with him to determine desirable visualizations. </p>
<h2>Software</h2>
<p>
Try it online <a href="http://cse512-14w.github.io/fp-kabailey-lijl-naveenks/main.html">here</a>.
</p>
<h2>Materials</h2>
<div class="links">
<a href="final/paper-kabailey-lijl-naveenks.pdf" >PDF</a>
|
<a href="final/poster-kabailey-lijl-naveenks.pdf" >Poster</a>
</div>
<div class='footer'>
<a href='http://cs.washington.edu'>Computer Science & Engineering</a> -
<a href='http://www.washington.edu'>University of Washington</a>
</div>
</div>
<br/>
<br/>
</div>
</body>
</html>