forked from ben0oil1/GPT-SoVITS-Server
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.py
333 lines (294 loc) · 12.2 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import argparse
import os
import re
import signal
import sys
import wave
from io import BytesIO
from time import time as ttime
import ffmpeg
import librosa
import numpy as np
import soundfile as sf
import torch
import uvicorn
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import StreamingResponse
# from feature_extractor
import _lib.cnhubert as cnhubert
from _lib.mel_processing import spectrogram_torch
from _lib.models import SynthesizerTrn
from transformers import AutoModelForMaskedLM, AutoTokenizer
from text import cleaned_text_to_sequence
from text.cleaner import clean_text
# -------pretrained_models和训练好的模型,丢在下面的位置----------------
cnhubert_path = "./data/pretrained_models/chinese-hubert-base"
bert_path = "./data/pretrained_models/chinese-roberta-wwm-ext-large"
# 从云端下载回来的训练好的内容
sovits_path = './data/_models/svc/0128-0359_e12_s144.pth'
gpt_path = './data/_models/gpt/0128-0359-e30.ckpt'
# 推理引用的音频文件地址和文本信息
default_refer_path = './data/_models/000.wav'
default_refer_text = "云南凤庆给您发货,一斤装四十九,两斤装九十五,三斤装一百二十九,规格越大价格越划算。"
# 语言,我个人把日语韩语乱七八糟的直接删除了,因为我用不上,大家需要的话自己做适配
default_refer_language = 'zh'
# 使用cuda就是用英伟达的gpu,cpu就是用cpu
device = 'cpu' # cpu cuda
is_half = False
# -----------------------
# 如果要增加更多的参数选项,在这里设定
parser = argparse.ArgumentParser(description="GPT-SoVITS-SERVER")
# parser.add_argument("-t", "--text", type=str, default='请输入文字,测试合成效果', help=f'.\runtime\python.exe .\api-ben2.py -t "输入要合成的文字"')
# parser.add_argument("-f", "--huashu", type=str, default='', help=f'.\runtime\python.exe .\app.py -f ./huahsu.json')
parser.add_argument("-drp", "--default_refer_path", type=str, default="", help="1/2")
parser.add_argument("-drt", "--default_refer_text", type=str, default="", help="1/2")
parser.add_argument("-p", "--port", type=int, default='8080', help="default: 9880")
parser.add_argument("-a", "--bind_addr", type=str, default="127.0.0.1", help="default: 127.0.0.1")
args = parser.parse_args()
if args.default_refer_path and args.default_refer_text:
default_refer_path = args.default_refer_path
default_refer_text = args.default_refer_text
cnhubert.cnhubert_base_path = cnhubert_path
tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
if is_half:
bert_model = bert_model.half().to(device)
else:
bert_model = bert_model.to(device)
# https://github.com/RVC-Boss/GPT-SoVITS/blob/main/api.py
def load_audio(file, sr):
try:
file = clean_path(file) # 防止小白拷路径头尾带了空格和"和回车
# print(file)
# print( '~~~ os.path.exists(file)', os.path.exists(file) )
if os.path.exists(file) == False:
raise RuntimeError(
"错误:You input a wrong audio path that does not exists, please fix it!"
)
out, _ = (
ffmpeg.input(file, threads=0)
.output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
)
except Exception as e:
raise RuntimeError(f"Failed to load audio: {e}")
return np.frombuffer(out, np.float32).flatten()
def clean_path(path_str):
# path_str = path_str.replace('/', '\\') #仅在windows下使用
return path_str.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
def get_bert_feature(text, word2ph):
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(device) #####输入是long不用管精度问题,精度随bert_model
res = bert_model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
assert len(word2ph) == len(text)
phone_level_feature = []
for i in range(len(word2ph)):
repeat_feature = res[i].repeat(word2ph[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
# if(is_half==True):phone_level_feature=phone_level_feature.half()
return phone_level_feature.T
n_semantic = 1024
dict_s2 = torch.load(sovits_path, map_location="cpu")
hps = dict_s2["config"]
class DictToAttrRecursive:
def __init__(self, input_dict):
for key, value in input_dict.items():
if isinstance(value, dict):
# 如果值是字典,递归调用构造函数
setattr(self, key, DictToAttrRecursive(value))
else:
setattr(self, key, value)
hps = DictToAttrRecursive(hps)
hps.model.semantic_frame_rate = "25hz"
dict_s1 = torch.load(gpt_path, map_location="cpu")
config = dict_s1["config"]
ssl_model = cnhubert.get_model()
if is_half:
ssl_model = ssl_model.half().to(device)
else:
ssl_model = ssl_model.to(device)
vq_model = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model)
if is_half:
vq_model = vq_model.half().to(device)
else:
vq_model = vq_model.to(device)
vq_model.eval()
vq_model.load_state_dict(dict_s2["weight"], strict=False)
# print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
hz = 50
max_sec = config['data']['max_sec']
t2s_model = Text2SemanticLightningModule(config, "ojbk", is_train=False)
t2s_model.load_state_dict(dict_s1["weight"])
if is_half:
t2s_model = t2s_model.half()
t2s_model = t2s_model.to(device)
t2s_model.eval()
total = sum([param.nelement() for param in t2s_model.parameters()])
# print("Number of parameter: %.2fM" % (total / 1e6))
def get_spepc(hps, filename):
audio = load_audio(filename, int(hps.data.sampling_rate))
audio = torch.FloatTensor(audio)
audio_norm = audio
audio_norm = audio_norm.unsqueeze(0)
spec = spectrogram_torch(audio_norm, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, center=False)
return spec
splits = {",","。","?","!",",",".","?","!","~",":",":","—","…",}
def get_first(text):
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
text = re.split(pattern, text)[0].strip()
return text
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language):
t0 = ttime()
prompt_text = prompt_text.strip("\n")
prompt_language, text = prompt_language, text.strip("\n")
zero_wav = np.zeros(
int(hps.data.sampling_rate * 0.3),
dtype=np.float16 if is_half == True else np.float32,
)
with torch.no_grad():
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
wav16k = torch.from_numpy(wav16k)
zero_wav_torch = torch.from_numpy(zero_wav)
if is_half == True:
wav16k = wav16k.half().to(device)
zero_wav_torch = zero_wav_torch.half().to(device)
else:
wav16k = wav16k.to(device)
zero_wav_torch = zero_wav_torch.to(device)
wav16k=torch.cat([wav16k,zero_wav_torch])
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
"last_hidden_state"
].transpose(
1, 2
) # .float()
codes = vq_model.extract_latent(ssl_content)
prompt_semantic = codes[0, 0]
t1 = ttime()
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language)
phones1 = cleaned_text_to_sequence(phones1)
texts = text.split("\n")
if(len(get_first(text))<4):text+="。"if text!="en"else "."
audio_opt = []
for text in texts:
# 解决输入目标文本的空行导致报错的问题
if (len(text.strip()) == 0):
continue
phones2, word2ph2, norm_text2 = clean_text(text, text_language)
phones2 = cleaned_text_to_sequence(phones2)
if prompt_language == "zh":
bert1 = get_bert_feature(norm_text1, word2ph1).to(device)
else:
bert1 = torch.zeros(
(1024, len(phones1)),
dtype=torch.float16 if is_half == True else torch.float32,
).to(device)
if text_language == "zh":
bert2 = get_bert_feature(norm_text2, word2ph2).to(device)
else:
bert2 = torch.zeros((1024, len(phones2))).to(bert1)
bert = torch.cat([bert1, bert2], 1)
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
prompt = prompt_semantic.unsqueeze(0).to(device)
t2 = ttime()
with torch.no_grad():
# pred_semantic = t2s_model.model.infer(
pred_semantic, idx = t2s_model.model.infer_panel(
all_phoneme_ids,
all_phoneme_len,
prompt,
bert,
# prompt_phone_len=ph_offset,
top_k=config["inference"]["top_k"],
early_stop_num=hz * max_sec,
)
t3 = ttime()
# print(pred_semantic.shape,idx)
pred_semantic = pred_semantic[:, -idx:].unsqueeze(
0
) # .unsqueeze(0)#mq要多unsqueeze一次
refer = get_spepc(hps, ref_wav_path) # .to(device)
if is_half == True:
refer = refer.half().to(device)
else:
refer = refer.to(device)
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
audio = (
vq_model.decode(
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
)
.detach()
.cpu()
.numpy()[0, 0]
) ###试试重建不带上prompt部分
audio_opt.append(audio)
audio_opt.append(zero_wav)
t4 = ttime()
# print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
np.int16
)
def tts( text, filename = "", text_language="zh"):
refer_wav_path, prompt_text, prompt_language = (
default_refer_path,
default_refer_text,
default_refer_language,
)
with torch.no_grad():
gen = get_tts_wav(
refer_wav_path, prompt_text, prompt_language, text, text_language
)
sampling_rate, audio_data = next(gen)
if filename == '':
filename = 'result.wav'
with wave.open( filename ,'wb') as fw:
fw.setnchannels(1)
fw.setsampwidth(2)
fw.setframerate(sampling_rate)
fw.writeframesraw(audio_data)
torch.cuda.empty_cache()
# refer_wav_path, prompt_text, prompt_language,
def handle(command, text, text_language='zh'):
if command == "/restart":
os.execl('./runtime/python.exe', './runtime/python.exe', *sys.argv)
elif command == "ping":
return 'pong'
elif command == "/exit":
os.kill(os.getpid(), signal.SIGTERM)
exit(0)
refer_wav_path, prompt_text, prompt_language = (
default_refer_path,
default_refer_text,
default_refer_language,
)
with torch.no_grad():
gen = get_tts_wav(
refer_wav_path, prompt_text, prompt_language, text, text_language
)
sampling_rate, audio_data = next(gen)
wav = BytesIO()
sf.write(wav, audio_data, sampling_rate, format="wav")
wav.seek(0)
torch.cuda.empty_cache()
return StreamingResponse(wav, media_type="audio/wav")
app = FastAPI()
@app.post("/")
async def tts_endpoint(request: Request):
json_post_raw = await request.json()
return handle( json_post_raw.get("command"), json_post_raw.get("text"), )
@app.get("/")
async def tts_endpoint(command: str = None,text: str = None, ):
print(command , text )
return handle(command, text )
if __name__ == "__main__":
uvicorn.run(app , host='0.0.0.0', port=8080, workers=1)