-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
69 lines (60 loc) · 2.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import os
import numpy as np
import pickle
import PIL.Image
import cv2
# import dnnlib.submission.submit as submit
# save_pkl, load_pkl are used by the mri code to save datasets
def save_pkl(obj, filename):
with open(filename, 'wb') as file:
pickle.dump(obj, file, protocol=pickle.HIGHEST_PROTOCOL)
def load_pkl(filename):
with open(filename, 'rb') as file:
return pickle.load(file)
def ssim(prediction, target):
C1 = (0.01 * 255)**2
C2 = (0.03 * 255)**2
img1 = prediction.astype(np.float64)
img2 = target.astype(np.float64)
kernel = cv2.getGaussianKernel(11, 1.5)
window = np.outer(kernel, kernel.transpose())
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
mu1_sq = mu1**2
mu2_sq = mu2**2
mu1_mu2 = mu1 * mu2
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) *
(2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
(sigma1_sq + sigma2_sq + C2))
return ssim_map.mean()
def calculate_ssim(target, ref):
'''
calculate SSIM
the same outputs as MATLAB's
img1, img2: [0, 255]
'''
img1 = np.array(target, dtype=np.float64)
img2 = np.array(ref, dtype=np.float64)
if not img1.shape == img2.shape:
raise ValueError('Input images must have the same dimensions.')
if img1.ndim == 2:
return ssim(img1, img2)
elif img1.ndim == 3:
if img1.shape[2] == 3:
ssims = []
for i in range(3):
ssims.append(ssim(img1[:, :, i], img2[:, :, i]))
return np.array(ssims).mean()
elif img1.shape[2] == 1:
return ssim(np.squeeze(img1), np.squeeze(img2))
else:
raise ValueError('Wrong input image dimensions.')
def calculate_psnr(target, ref):
img1 = np.array(target, dtype=np.float32)
img2 = np.array(ref, dtype=np.float32)
diff = img1 - img2
psnr = 10.0 * np.log10(255.0 * 255.0 / np.mean(np.square(diff)))
return psnr