-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCPU.cpp
312 lines (286 loc) · 12.4 KB
/
CPU.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
/******************************
* Submitted by: Colten Coffman CHC69
* CS 3339 - Fall 2020, Texas State University
* Project 2 Emulator
* Copyright 2020, all rights reserved
* Updated by Lee B. Hinkle based on prior work by Martin Burtscher and Molly O'Neil
******************************/
#include "CPU.h"
const string CPU::regNames[] = {"$zero","$at","$v0","$v1","$a0","$a1","$a2","$a3",
"$t0","$t1","$t2","$t3","$t4","$t5","$t6","$t7",
"$s0","$s1","$s2","$s3","$s4","$s5","$s6","$s7",
"$t8","$t9","$k0","$k1","$gp","$sp","$fp","$ra"};
CPU::CPU(uint32_t pc, Memory &iMem, Memory &dMem) : pc(pc), iMem(iMem), dMem(dMem) {
for(int i = 0; i < NREGS; i++) {
regFile[i] = 0;
}
hi = 0;
lo = 0;
regFile[28] = 0x10008000; // gp
regFile[29] = 0x10000000 + dMem.getSize(); // sp
instructions = 0;
stop = false;
}
void CPU::run() {
while(!stop) {
instructions++;
fetch();
decode();
execute();
mem();
writeback();
stats.clock();
D(printRegFile());
}
}
void CPU::fetch() {
instr = iMem.loadWord(pc);
pc = pc + 4;
}
/////////////////////////////////////////
// ALL YOUR CHANGES GO IN THIS FUNCTION
/////////////////////////////////////////
void CPU::decode() {
uint32_t opcode; // opcode field
uint32_t rs, rt, rd; // register specifiers
uint32_t shamt; // shift amount (R-type)
uint32_t funct; // funct field (R-type)
uint32_t uimm; // unsigned version of immediate (I-type)
int32_t simm; // signed version of immediate (I-type)
uint32_t addr; // jump address offset field (J-type)
opcode = instr >> 26;
rs = instr >> 21 & 0x1f;
rt = instr >> 16 & 0x1f;
rd = instr >> 11 & 0x1f;
shamt = instr >> 6 & 0x1f;
funct = instr & 0x3f;
uimm = instr & 0xffff;
simm = (((signed) uimm) << 16) >> 16;
addr = instr & 0x3ffffff;
// Hint: you probably want to give all the control signals some "safe"
// default value here, and then override their values as necessary in each
// case statement below!
/* safe values so comp doesn't freak out.
basically set everything to false and zero*/
opIsLoad = false;
opIsStore = false;
opIsMultDiv = false;
writeDest = false;
destReg = regFile[REG_ZERO];
aluSrc1 = regFile[REG_ZERO];
aluSrc2 = regFile[REG_ZERO];
storeData = 0;
aluOp = ADD;
D(cout << " " << hex << setw(8) << pc - 4 << ": ");
switch(opcode) {
case 0x00:
switch(funct) {
case 0x00: D(cout << "sll " << regNames[rd] << ", " << regNames[rs] << ", " << dec << shamt);
writeDest = true;
aluOp = SHF_L;
destReg = rd; stats.registerDest(rd);
aluSrc1 = regFile[rs]; stats.registerSrc(rs);
aluSrc2 = shamt;
break; // use prototype above, not the greensheet
case 0x03: D(cout << "sra " << regNames[rd] << ", " << regNames[rs] << ", " << dec << shamt);
writeDest = true;
aluOp = SHF_R;
destReg = rd; stats.registerDest(rd);
aluSrc1 = regFile[rs]; stats.registerSrc(rs);
aluSrc2 = shamt;
break; // use prototype above, not the greensheet
case 0x08: D(cout << "jr " << regNames[rs]);
writeDest = false; // result doesn't need to be in register
aluSrc1 = regFile[rs]; stats.registerSrc(rs);
aluSrc2 = regFile[REG_ZERO];
aluOp = ADD;
pc = aluSrc1;
stats.flush(2);
break;
case 0x10: D(cout << "mfhi " << regNames[rd]);
writeDest = true;
destReg = rd; stats.registerDest(rd);
aluOp = ADD;
aluSrc1 = hi; stats.registerSrc(REG_HILO);
aluSrc2 = regFile[REG_ZERO];// just moving so use $zero at 2
break;
case 0x12: D(cout << "mflo " << regNames[rd]);
writeDest = true;
aluOp = ADD;
destReg = rd; stats.registerDest(rd);
aluSrc1 = lo; stats.registerSrc(REG_HILO);
aluSrc2 = regFile[REG_ZERO];
break;
case 0x18: D(cout << "mult " << regNames[rs] << ", " << regNames[rt]);
writeDest = false;
opIsMultDiv = true;
aluOp = MUL; stats.registerDest(REG_HILO);
aluSrc1 = regFile[rs]; stats.registerSrc(rs);
aluSrc2 = regFile[rt]; stats.registerSrc(rt);
break;
case 0x1a: D(cout << "div " << regNames[rs] << ", " << regNames[rt]);
writeDest = false;
aluOp = DIV;
opIsMultDiv = true; stats.registerDest(REG_HILO);
aluSrc1 = regFile[rs]; stats.registerSrc(rs);
aluSrc2 = regFile[rt]; stats.registerSrc(rt);
break;
case 0x21: D(cout << "addu " << regNames[rd] << ", " << regNames[rs] << ", " << regNames[rt]);
writeDest = true;
destReg = rd; stats.registerDest(rd);
aluOp = ADD;
aluSrc1 = regFile[rs]; stats.registerSrc(rs);
aluSrc2 = regFile[rt]; stats.registerSrc(rt);
break;
case 0x23: D(cout << "subu " << regNames[rd] << ", " << regNames[rs] << ", " << regNames[rt]);
writeDest = true;
destReg = rd; stats.registerDest(rd);
aluOp = ADD;
aluSrc1 = regFile[rs]; stats.registerSrc(rs);
aluSrc2 = -regFile[rt]; stats.registerSrc(rt);//same as adding negative version of add rt reg.
break; //hint: subtract is the same as adding a negative
case 0x2a: D(cout << "slt " << regNames[rd] << ", " << regNames[rs] << ", " << regNames[rt]);
writeDest = true;
destReg = rd; stats.registerDest(rd);
aluOp = CMP_LT;
aluSrc1 = regFile[rs]; stats.registerSrc(rs);
aluSrc2 = regFile[rt]; stats.registerSrc(rt);
break;
default: cerr << "unimplemented instruction: pc = 0x" << hex << pc - 4 << endl;
}
break;
case 0x02: D(cout << "j " << hex << ((pc & 0xf0000000) | addr << 2)); // P1: pc + 4
writeDest = false;
pc = (pc & 0xf0000000) | addr << 2;
stats.flush(2);
break;
case 0x03: D(cout << "jal " << hex << ((pc & 0xf0000000) | addr << 2)); // P1: pc + 4
writeDest = true;
destReg = REG_RA; stats.registerDest(REG_RA);// writes PC+4 to $ra
aluOp = ADD; // ALU should pass pc thru without changes
aluSrc1 = pc; stats.registerSrc(aluSrc1);
aluSrc2 = regFile[REG_ZERO]; // always reads zero
pc = (pc & 0xf0000000) | addr << 2;
stats.flush(2);
break;
case 0x04: D(cout << "beq " << regNames[rs] << ", " << regNames[rt] << ", " << pc + (simm << 2));
stats.registerSrc(rs); stats.registerSrc(rt);
stats.countBranch();
if(regFile[rs] == regFile[rt]){
pc = (pc + (simm << 2));
stats.countTaken();
stats.flush(2);
}
break; // read the handout carefully, update PC directly here as in jal example
case 0x05: D(cout << "bne " << regNames[rs] << ", " << regNames[rt] << ", " << pc + (simm << 2)); // if rs != rt -> go
stats.registerSrc(rs); stats.registerSrc(rt);
stats.countBranch();
if(regFile[rs] != regFile[rt]){
pc = (pc + (simm << 2));
stats.countTaken();
stats.flush(2);
}
break; // same comment as beq
case 0x09: D(cout << "addiu " << regNames[rt] << ", " << regNames[rs] << ", " << dec << simm);
writeDest = true;
destReg = rt; stats.registerDest(rt);
aluOp = ADD;
aluSrc1 = regFile[rs]; stats.registerSrc(rs);
aluSrc2 = simm; // just needs the imm
break;
case 0x0c: D(cout << "andi " << regNames[rt] << ", " << regNames[rs] << ", " << dec << uimm);
writeDest = true;
destReg = rt; stats.registerDest(rt);
aluOp = AND;
aluSrc1 = regFile[rs]; stats.registerSrc(rs);
aluSrc2 = uimm;
break;
case 0x0f: D(cout << "lui " << regNames[rt] << ", " << dec << simm); // alusrc needs to be 16 WHY NOT DEBUG
writeDest = true;
destReg = rt; stats.registerDest(rt);
aluOp = SHF_L;
aluSrc1 = simm;
aluSrc2 = 16;
break; //use the ALU to perform necessary op, you may set aluSrc2 = xx directly
case 0x1a: D(cout << "trap " << hex << addr);
switch(addr & 0xf) {
case 0x0: cout << endl; break;
case 0x1: cout << " " << (signed)regFile[rs]; stats.registerSrc(rs);
break;
case 0x5: cout << endl << "? "; cin >> regFile[rt]; //stats.registerDest(rt);
break;
case 0xa: stop = true; break;
default: cerr << "unimplemented trap: pc = 0x" << hex << pc - 4 << endl;
stop = true;
}
break;
case 0x23: D(cout << "lw " << regNames[rt] << ", " << dec << simm << "(" << regNames[rs] << ")"); // mem operation
stats.countMemOp();
writeDest = true;
destReg = rt; stats.registerDest(rt);
opIsLoad = true;
aluOp = ADD;
aluSrc1 = regFile[rs]; stats.registerSrc(rs);
aluSrc2 = simm;
break; // do not interact with memory here - setup control signals for mem()
case 0x2b: D(cout << "sw " << regNames[rt] << ", " << dec << simm << "(" << regNames[rs] << ")"); //memop
stats.countMemOp();
opIsStore = true;
storeData = regFile[rt];//memop?What is this
aluOp = ADD;
aluSrc1 = regFile[rs]; stats.registerSrc(rs); // sinceits using rt above?
aluSrc2 = simm;
break; // same comment as lw
default: cerr << "unimplemented instruction: pc = 0x" << hex << pc - 4 << endl;
}
D(cout << endl);
}
void CPU::execute() {
aluOut = alu.op(aluOp, aluSrc1, aluSrc2);
}
void CPU::mem() {
if(opIsLoad)
writeData = dMem.loadWord(aluOut);
else
writeData = aluOut;
if(opIsStore)
dMem.storeWord(storeData, aluOut);
}
void CPU::writeback() {
if(writeDest && destReg > 0) // skip when write is to zero_register
regFile[destReg] = writeData;
if(opIsMultDiv) {
hi = alu.getUpper();
lo = alu.getLower();
}
}
void CPU::printRegFile() {
cout << hex;
for(int i = 0; i < NREGS; i++) {
cout << " " << regNames[i];
if(i > 0) cout << " ";
cout << ": " << setfill('0') << setw(8) << regFile[i];
if( i == (NREGS - 1) || (i + 1) % 4 == 0 )
cout << endl;
}
cout << " hi : " << setfill('0') << setw(8) << hi;
cout << " lo : " << setfill('0') << setw(8) << lo;
cout << dec << endl;
}
void CPU::printFinalStats() {
//cout << "CS 3339 MIPS Simulator" << endl;
//cout << "Running: " << endl;
//cout << "\n";
cout << "Program finished at pc = 0x" << hex << pc << " ("
<< dec << instructions << " instructions executed)" << endl;
cout << "\n";
cout << "Cycles : " << stats.getCycles() << endl;
cout << "CPI: " << fixed << setprecision(2) << stats.getCycles() / (double)instructions << endl;
cout << "\nBubbles: " << stats.getBubbles() << endl;
cout << "Flushes: "<< stats.getFlushes() << endl;
cout << "\nMem ops: " << fixed << setprecision(1) << 100.0 * stats.getMemOps() / instructions
<< "% " << " of instructions" << endl;
cout << "Branches: " << fixed << setprecision(1) << 100.0 * stats.getBranches() / instructions
<< "% " << " of instructions" << endl;
cout << " % " << "Taken: " << fixed << setprecision(1) << 100.0 * stats.getTaken() / stats.getBranches() << endl;
}