-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
397 lines (338 loc) · 15.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import argparse
import os
import sys
import time
import random
import torch
import torch.nn.parallel
import torchnet.meter as meter
import torch.nn as nn
from tqdm import tqdm
from torch.utils.data import DataLoader
from torchvision import transforms
from modules.core.dataloader import SequenceDataset
from modules.models.ModelHandler import ModelHandler
from modules.handlers.TextColor import TextColor
"""
FREEZE THIS BRANCH TO HAVE 1 WINDOW!!
Train a model and save the model that performs best.
Input:
- A train CSV containing training image set information (usually chr1-18)
- A test CSV containing testing image set information (usually chr19)
Output:
- A trained model
"""
FLANK_SIZE = 10
CLASS_WEIGHTS = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
def test(data_file, batch_size, gru_layers, hidden_size, gpu_mode, encoder_model, decoder_model, num_classes, num_workers):
transformations = transforms.Compose([transforms.ToTensor()])
# data loader
test_data = SequenceDataset(data_file, transformations)
test_loader = DataLoader(test_data,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=gpu_mode)
sys.stderr.write(TextColor.CYAN + 'Test data loaded\n')
# set the evaluation mode of the model
encoder_model.eval()
decoder_model.eval()
class_weights = torch.FloatTensor(CLASS_WEIGHTS)
# Loss
test_criterion = nn.CrossEntropyLoss(weight=class_weights)
if gpu_mode is True:
test_criterion = test_criterion.cuda()
# Test the Model
# sys.stderr.write(TextColor.PURPLE + 'Test starting\n' + TextColor.END)
confusion_matrix = meter.ConfusionMeter(num_classes)
total_loss = 0
total_images = 0
accuracy = 0
with torch.no_grad():
with tqdm(total=len(test_loader), desc='Accuracy: ', leave=True, dynamic_ncols=True) as pbar:
for i, (images, labels) in enumerate(test_loader):
if gpu_mode:
# encoder_hidden = encoder_hidden.cuda()
images = images.cuda()
labels = labels.cuda()
decoder_input = torch.LongTensor(labels.size(0), 1).zero_()
encoder_hidden = torch.FloatTensor(labels.size(0), gru_layers * 2, hidden_size).zero_()
if gpu_mode:
decoder_input = decoder_input.cuda()
encoder_hidden = encoder_hidden.cuda()
window_size = images.size(2) - 2 * FLANK_SIZE
index_start = FLANK_SIZE
end_index = index_start + window_size
for seq_index in range(index_start, end_index):
x = images[:, :, seq_index - FLANK_SIZE:seq_index + FLANK_SIZE + 1, :]
y = labels[:, seq_index - index_start]
output_enc, hidden_dec = encoder_model(x, encoder_hidden)
output_dec, decoder_hidden, attn = decoder_model(decoder_input, output_enc, hidden_dec)
encoder_hidden = decoder_hidden.detach()
topv, topi = output_dec.topk(1)
decoder_input = topi.squeeze().detach() # detach from history as input
# loss
loss = test_criterion(output_dec, y)
confusion_matrix.add(output_dec.data.contiguous().view(-1, num_classes), y.data.contiguous().view(-1))
total_loss += loss.item()
total_images += labels.size(0)
del output_enc, hidden_dec, attn
pbar.update(1)
cm_value = confusion_matrix.value()
denom = (cm_value.sum() - cm_value[0][0]) if (cm_value.sum() - cm_value[0][0]) > 0 else 1.0
accuracy = 100.0 * (cm_value[1][1] + cm_value[2][2] + cm_value[3][3] + cm_value[4][4] +
cm_value[5][5]) / denom
pbar.set_description("Accuracy: " + str(accuracy))
del images, labels, decoder_input, encoder_hidden
avg_loss = total_loss / total_images if total_images else 0
# print('Test Loss: ' + str(avg_loss))
# print('Confusion Matrix: \n', confusion_matrix.conf)
sys.stderr.write(TextColor.YELLOW+'\nTest Loss: ' + str(avg_loss) + "\n"+TextColor.END)
sys.stderr.write("Confusion Matrix: \n" + str(confusion_matrix.conf) + "\n" + TextColor.END)
return str(confusion_matrix.conf), avg_loss, accuracy
def train(train_file, test_file, batch_size, epoch_limit, gpu_mode, num_workers, retrain_model, retrain_model_path,
model_dir, stats_dir, num_classes=6):
"""
Train a model and save
:param train_file: A CSV file containing train image information
:param test_file: A CSV file containing test image information
:param batch_size: Batch size for training
:param epoch_limit: Number of epochs to train on
:param gpu_mode: If true the model will be trained on GPU
:param num_workers: Number of workers for data loading
:param retrain_model: If true then a trained model will be retrained
:param retrain_model_path: If retrain model is true then the model will be loaded from here
:param model_dir: Directory where model will be saved
:param stats_dir: Directory where stats of the training will be saved
:param num_classes: Number of output classes
:return:
"""
train_loss_logger = open(stats_dir + "train_loss.csv", 'w')
test_loss_logger = open(stats_dir + "test_loss.csv", 'w')
confusion_matrix_logger = open(stats_dir + "confusion_matrix.txt", 'w')
transformations = transforms.Compose([transforms.ToTensor()])
sys.stderr.write(TextColor.PURPLE + 'Loading data\n' + TextColor.END)
train_data_set = SequenceDataset(train_file, transformations)
train_loader = DataLoader(train_data_set,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=gpu_mode
)
# this needs to change
hidden_size = 256
gru_layers = 3
encoder_model, decoder_model = ModelHandler.get_new_model(input_channels=10,
gru_layers=gru_layers,
hidden_size=hidden_size,
num_classes=6)
encoder_optimizer = torch.optim.Adam(encoder_model.parameters(), lr=0.00027273203852256093,
weight_decay=0.004397360934217783)
decoder_optimizer = torch.optim.Adam(decoder_model.parameters(), lr=6.420349617370074e-05,
weight_decay=7.962076929362814e-06)
if retrain_model is True:
if os.path.isfile(retrain_model_path) is False:
sys.stderr.write(TextColor.RED + "ERROR: INVALID PATH TO RETRAIN PATH MODEL --retrain_model_path\n")
exit(1)
sys.stderr.write(TextColor.GREEN + "INFO: RETRAIN MODEL LOADING\n" + TextColor.END)
encoder_model, decoder_model = ModelHandler.load_model_for_training(encoder_model,
decoder_model,
retrain_model_path)
encoder_optimizer, decoder_optimizer = ModelHandler.load_optimizer(encoder_optimizer,
decoder_optimizer,
retrain_model_path,
gpu_mode)
sys.stderr.write(TextColor.GREEN + "INFO: RETRAIN MODEL LOADED\n" + TextColor.END)
if gpu_mode:
encoder_model = torch.nn.DataParallel(encoder_model).cuda()
decoder_model = torch.nn.DataParallel(decoder_model).cuda()
class_weights = torch.FloatTensor(CLASS_WEIGHTS)
# Loss
criterion = nn.CrossEntropyLoss(weight=class_weights)
if gpu_mode is True:
criterion = criterion.cuda()
start_epoch = 0
# Train the Model
sys.stderr.write(TextColor.PURPLE + 'Training starting\n' + TextColor.END)
for epoch in range(start_epoch, epoch_limit, 1):
total_loss = 0
total_images = 0
sys.stderr.write(TextColor.BLUE + 'Train epoch: ' + str(epoch + 1) + "\n")
# make sure the model is in train mode. BN is different in train and eval.
encoder_model.train()
decoder_model.train()
batch_no = 1
with tqdm(total=len(train_loader), desc='Loss', leave=True, dynamic_ncols=True) as progress_bar:
for images, labels in train_loader:
if gpu_mode:
# encoder_hidden = encoder_hidden.cuda()
images = images.cuda()
labels = labels.cuda()
teacher_forcing_ratio = 0.5
decoder_input = torch.LongTensor(labels.size(0), 1).zero_()
encoder_hidden = torch.FloatTensor(labels.size(0), gru_layers * 2, hidden_size).zero_()
use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False
if gpu_mode:
decoder_input = decoder_input.cuda()
encoder_hidden = encoder_hidden.cuda()
window_size = images.size(2) - 2 * FLANK_SIZE
index_start = FLANK_SIZE
end_index = index_start + window_size
for seq_index in range(index_start, end_index):
encoder_optimizer.zero_grad()
decoder_optimizer.zero_grad()
x = images[:, :, seq_index - FLANK_SIZE:seq_index + FLANK_SIZE + 1, :]
y = labels[:, seq_index - index_start]
output_enc, hidden_dec = encoder_model(x, encoder_hidden)
output_dec, decoder_hidden, attn = decoder_model(decoder_input, output_enc, hidden_dec)
encoder_hidden = decoder_hidden.detach()
# loss + optimize
loss = criterion(output_dec, y)
loss.backward()
encoder_optimizer.step()
decoder_optimizer.step()
if use_teacher_forcing:
decoder_input = y
else:
topv, topi = output_dec.topk(1)
decoder_input = topi.squeeze().detach()
total_loss += loss.item()
total_images += labels.size(0)
del output_enc, hidden_dec, attn
# update the progress bar
avg_loss = (total_loss / total_images) if total_images else 0
progress_bar.set_description("Loss: " + str(avg_loss))
train_loss_logger.write(str(epoch + 1) + "," + str(batch_no) + "," + str(avg_loss) + "\n")
progress_bar.refresh()
progress_bar.update(1)
batch_no += 1
del images, labels, decoder_input, encoder_hidden
progress_bar.close()
# save the model after each epoch
save_best_model(encoder_model, decoder_model, encoder_optimizer, decoder_optimizer,
model_dir+"_epoch_"+str(epoch+1))
# After each epoch do validation and write the loggers
confusion_matrix, test_loss, accuracy = \
test(test_file, batch_size, gru_layers, hidden_size, gpu_mode, encoder_model, decoder_model, num_classes, num_workers)
# update the loggers
test_loss_logger.write(str(epoch+1) + "," + str(test_loss) + "," + str(accuracy) + "\n")
confusion_matrix_logger.write(str(epoch+1) + "\n" + str(confusion_matrix) + "\n")
train_loss_logger.flush()
test_loss_logger.flush()
confusion_matrix_logger.flush()
sys.stderr.write(TextColor.PURPLE + 'Finished training\n' + TextColor.END)
def save_best_model(encoder_model, decoder_model, encoder_optimizer, decoder_optimizer, file_name):
"""
Save the best model
:param encoder_model: A trained encoder model
:param decoder_model: A trained decoder model
:param encoder_optimizer: Encoder optimizer
:param decoder_optimizer: Decoder optimizer
:param file_name: Output file name
:return:
"""
if os.path.isfile(file_name + '_checkpoint.pkl'):
os.remove(file_name + '_checkpoint.pkl')
ModelHandler.save_checkpoint({
'encoder_state_dict': encoder_model.state_dict(),
'decoder_state_dict': decoder_model.state_dict(),
'encoder_optimizer': encoder_optimizer.state_dict(),
'decoder_optimizer': decoder_optimizer.state_dict(),
}, file_name + '_checkpoint.pkl')
sys.stderr.write(TextColor.RED + "\nMODEL SAVED SUCCESSFULLY.\n" + TextColor.END)
def handle_output_directory(output_dir):
"""
Process the output directory and return a valid directory where we save the output
:param output_dir: Output directory path
:return:
"""
timestr = time.strftime("%m%d%Y_%H%M%S")
# process the output directory
if output_dir[-1] != "/":
output_dir += "/"
if not os.path.exists(output_dir):
os.mkdir(output_dir)
# create an internal directory so we don't overwrite previous runs
model_save_dir = output_dir + "trained_models_" + timestr + "/"
if not os.path.exists(model_save_dir):
os.mkdir(model_save_dir)
stats_directory = model_save_dir + "stats_" + timestr + "/"
if not os.path.exists(stats_directory):
os.mkdir(stats_directory)
return model_save_dir, stats_directory
if __name__ == '__main__':
'''
Processes arguments and performs tasks.
'''
parser = argparse.ArgumentParser()
parser.add_argument(
"--train_file",
type=str,
required=True,
help="Training data description csv file."
)
parser.add_argument(
"--test_file",
type=str,
required=True,
help="Training data description csv file."
)
parser.add_argument(
"--batch_size",
type=int,
required=False,
default=100,
help="Batch size for training, default is 100."
)
parser.add_argument(
"--epoch_size",
type=int,
required=False,
default=10,
help="Epoch size for training iteration."
)
parser.add_argument(
"--model_out",
type=str,
required=False,
default='./model',
help="Path and file_name to save model, default is ./model"
)
parser.add_argument(
"--retrain_model",
type=bool,
default=False,
help="If true then retrain a pre-trained mode."
)
parser.add_argument(
"--retrain_model_path",
type=str,
default=False,
help="Path to the model that will be retrained."
)
parser.add_argument(
"--model_path",
type=str,
required=False,
default='./model',
help="Path of the model to load and retrain"
)
parser.add_argument(
"--gpu_mode",
type=bool,
default=False,
help="If true then cuda is on."
)
parser.add_argument(
"--num_workers",
type=int,
required=False,
default=40,
help="Epoch size for training iteration."
)
FLAGS, not_parsed = parser.parse_known_args()
model_out_dir, stats_out_dir = handle_output_directory(FLAGS.model_out.rpartition('/')[0]+"/")
model_out_dir = model_out_dir + "FRIDAY_model"
sys.stderr.write(TextColor.BLUE + "THE MODEL AND STATS LOCATION: " + str(model_out_dir) + "\n" + TextColor.END)
train(FLAGS.train_file, FLAGS.test_file, FLAGS.batch_size, FLAGS.epoch_size, FLAGS.gpu_mode, FLAGS.num_workers,
FLAGS.retrain_model, FLAGS.retrain_model_path, model_out_dir, stats_out_dir)