diff --git a/pipeline/src/constructors/make_model_priors.jl b/pipeline/src/constructors/make_model_priors.jl index 01348e7e6..88a90cf17 100644 --- a/pipeline/src/constructors/make_model_priors.jl +++ b/pipeline/src/constructors/make_model_priors.jl @@ -8,16 +8,18 @@ parameters. This is the default method. # Returns A dictionary containing the following prior distributions: - `"transformed_process_init_prior"`: A normal distribution with mean 0.0 and -standard deviation 0.25. -- `"std_prior"`: A half-normal distribution with standard deviation 0.25. -- `"damp_param_prior"`: A beta distribution with shape parameters 0.5 and 0.5. +standard deviation 0.025. +- `"std_prior"`: A half-normal distribution with standard deviation 0.025. +- `"damp_param_prior"`: A beta distribution with shape parameters 1 and 9. +- `"log_I0_prior"`: A normal distribution with mean log(100.0) and standard +deviation 1e-1. """ function make_model_priors(pipeline::AbstractEpiAwarePipeline) transformed_process_init_prior = Normal(0.0, 0.25) - std_prior = HalfNormal(0.25) - damp_param_prior = Beta(0.5, 0.5) - log_I0_prior = Normal(log(100.0), 1e-5) + std_prior = HalfNormal(0.025) + damp_param_prior = Beta(1, 9) + log_I0_prior = Normal(log(100.0), 1e-1) return Dict( "transformed_process_init_prior" => transformed_process_init_prior,