-
Notifications
You must be signed in to change notification settings - Fork 4
/
preprocessing.py
191 lines (138 loc) · 8.1 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import warnings
warnings.filterwarnings("ignore")
# From python packages
import numpy as np
from time import time
from copy import deepcopy
from termcolor import colored
import cv2, os, argparse, pydicom, pdb, logging, shutil
# From my packages
from breast_needed_functions import air_Libra, get_headers, air
from breast_needed_functions import fix_ratio, fix_ratio_to_csv
from breast_needed_functions import Normalize_Image, find_largest_obj
from breast_needed_functions import object_oriented_preprocessing, Remove_Top_Below_Side_effect
################################## This script is for training the svm
ap = argparse.ArgumentParser()
ap.add_argument("-o", "--output_path", required=False, default='./output',
help="path for saving results file")
ap.add_argument("-i", "--input_dicom", required=False, default='Full_path_to_dicom_file',
help="path for input files")
ap.add_argument("-if", "--image_format", required=False, default='.png',
help="The image format for saving")
ap.add_argument("-po", "--print_off", type=int, default=0,
help="If this is one, it turns off printing")
ap.add_argument("-ar", "--A_Range", type=int, default=2**8-1,
help="The number of bits for saving image")
ap.add_argument("-fis", "--final_image_size", type=int, default=512,
help="The final size of image")
ap.add_argument("-sfn", "--saving_folder_name", default="air_net_data/image",
help="The name of folder that the resutls to be saved for batch processing")
ap.add_argument("-lsm", "--libra_segmentation_method", default="Libra",
help="The segmentation method can be Libra or Exaturated")
ap.add_argument("-fpm", "--find_pacemaker", type=int, default=0,
help="If this is one, it will remove the pacemakers by replacing it with minimum")
args = vars(ap.parse_args())
class Segmentor(object): # The main class
def __init__(self):
######################################################################## Initial
######################################################################## Values
self.Case = args["input_dicom"]
self.output_path = args["output_path"]
self.image_format = args["image_format"]
self.saving_folder_name = args["saving_folder_name"]
self.A_Range = args["A_Range"]
self.final_image_size = args["final_image_size"]
self.print_off = int(args["print_off"])
self.list_dicom_headers = ["PatientID", "PatientAge", "KVP", "Exposure",
"PresentationIntentType", "Modality", "Manufacturer",
"ImagerPixelSpacing", "BodyPartThickness",
"ImageLaterality", "PhotometricInterpretation",
"Rows", "Columns", "ViewPosition", "FieldOfViewHorizontalFlip"]
if self.A_Range==2**16-1:
self.bits_conversion = "uint16"
elif self.A_Range==2**32-1:
self.bits_conversion = "uint32"
else:
self.bits_conversion = "uint8"
self.libra_segmentation_method = args["libra_segmentation_method"]
self.find_pacemaker = args["find_pacemaker"]
def Main_Loop_Function(self):
######################################################################## Couple of
######################################################################## initializations
T_Start = time()
# no output path = return the results in the same path as dataset
if self.output_path == '0':
self.output_path = self.PATH
if not os.path.exists(self.output_path):
os.makedirs(self.output_path)
# Log file loading
Path, File = os.path.split(self.Case)
if File[-4:] == ".dcm": File = File[:-4]
log_path = os.path.join(self.output_path, "LIBRA_"+File+".log")
logging.basicConfig(format='%(levelname)s %(asctime)s %(message)s',
filename=log_path, level=logging.INFO)
logging.info('The preprocessing is starting.')
#################################################################### Loading Image
#################################################################### & files
logging.info("The dicom file path is: " +self.Case)
if self.print_off==0: print(colored("[INFO]", "yellow") + " The dicom file path is: " +
colored(self.Case, "yellow"))
# Read Dicom file
try:
self.ds = pydicom.dcmread(self.Case)
self.image = (self.ds.pixel_array).astype("float")
except:
############ FIX THIS
from medpy.io import load
self.image, self.ds = load(self.Case)
fix_ratio_to_csv(self.ds.pixel_array, self)
dicom_headers = get_headers(self.ds, self.list_dicom_headers)
# Preprocessing step
self, self.image_metal = object_oriented_preprocessing(self)
self = Remove_Top_Below_Side_effect(self)
self.temp_image = deepcopy(self.image)
#################################################################### making
#################################################################### the mask and original image
logging.info("Saving image")
if self.print_off==0: print("[INFO] Saving image")
self.image_16bits = Normalize_Image(self.image, 2**16-1,
bits_conversion="uint16", flag_min_edition=True, Min=self.image.min())
if self.find_pacemaker==1:
self.image = self.image_metal
self.image = fix_ratio(self.image,
self.final_image_size, self.final_image_size)
self.image = Normalize_Image(self.image, self.A_Range,
bits_conversion=self.bits_conversion, flag_min_edition=True, Min=self.temp_image.min())
Image_Path = os.path.join(self.output_path, File)
if not(os.path.isdir(Image_Path)): os.makedirs(Image_Path)
Save_name_img = os.path.join(Image_Path, "air_breast_mask",
File+"_Normalized"+self.image_format)
cv2.imwrite(Save_name_img, self.image)
Save_name_img = os.path.join(Image_Path, "air_breast_mask",
File+"_16bits_Orginal"+self.image_format)
cv2.imwrite(Save_name_img, self.image_16bits)
dicom_headers.to_csv(os.path.join(Image_Path, "Headers.csv"))
Image_Path2 = os.path.join(self.output_path, self.saving_folder_name)
if not(os.path.isdir(Image_Path2)): os.makedirs(Image_Path2)
Save_name_img = os.path.join(Image_Path2, File+self.image_format)
cv2.imwrite(Save_name_img, self.image)
logging.info("The path of saved image (original normalized image) is: "+Save_name_img)
if self.print_off==0: print("[INFO] The path of saved image is: "+Save_name_img)
T_End = time()
if self.print_off==0: print("[INFO] Elapsed Time (for this file): "+'\033[1m'+ \
colored(str(round(T_End-T_Start, 2)), 'blue')+'\033[0m'+" seconds")
logging.info("Preprocessing was successfully done this case.")
_, new_log_path = os.path.split(log_path)
new_log_path = os.path.join(Image_Path, new_log_path)
shutil.move(log_path, new_log_path)
if self.print_off==0: print(colored("[INFO]", 'green')+" The breast-air segmentation was successfully processed for this case.")
logging.info('Segmentation of breast+pectrocal from air (background) starting for ALL CASES using CNN.')
###############################################################################
###############################################################################
###############################################################################
###############################################################################
###############################################################################
############################################################################### Running the code
if __name__ == "__main__":
Info = Segmentor()
Info.Main_Loop_Function()