-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprecision_recall_per_genome.py
executable file
·123 lines (106 loc) · 5.97 KB
/
precision_recall_per_genome.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#!/usr/bin/env python
# Script for computing precision and recall. It takes as input:
# - a gold standard file in bioboxes format
# (https://github.com/bioboxes/rfc/blob/4bb19a633a6a969c2332f1f298852114c5f89b1b/data-format/binning.mkd)
# with optional column _LENGTH
# - a (compressed) fasta or fastq file, required if _LENGTH is not present in the gold standard file
# - the bins to be evaluated in the same format as above
# It writes to standard output a table containing precision and recall for each bin.
import argparse
import numpy as np
import sys
from utils import load_data
from utils import argparse_parents
def map_genomes(gold_standard, bin_id_to_list_of_sequence_id):
"""
This script maps a predicted bin to the genome with the highest recall
@attention: In case of reads, read ids might not be paired read id and cause error: ReadID/1 ReadID/2
@param sequence_id_to_genome_id:
@param anonymous_sequence_id_to_lengths:
@param bin_id_to_list_of_sequence_id
@return:
"""
bin_id_to_genome_id_to_total_length = {}
mapped = set()
bin_id_to_mapped_genome = {}
for predicted_bin in bin_id_to_list_of_sequence_id:
bin_id_to_genome_id_to_total_length[predicted_bin] = {}
for sequence_id in bin_id_to_list_of_sequence_id[predicted_bin]:
genome_id = gold_standard.sequence_id_to_genome_id[sequence_id]
if genome_id not in bin_id_to_genome_id_to_total_length[predicted_bin]:
bin_id_to_genome_id_to_total_length[predicted_bin][genome_id] = 0
bin_id_to_genome_id_to_total_length[predicted_bin][genome_id] += gold_standard.sequence_id_to_lengths[sequence_id]
max_length = 0
best_genome_id = ""
for genome_id in bin_id_to_genome_id_to_total_length[predicted_bin]:
if max_length < bin_id_to_genome_id_to_total_length[predicted_bin][genome_id]:
max_length = bin_id_to_genome_id_to_total_length[predicted_bin][genome_id]
best_genome_id = genome_id
mapped.add(best_genome_id)
bin_id_to_mapped_genome[predicted_bin] = best_genome_id
return bin_id_to_mapped_genome, bin_id_to_genome_id_to_total_length, mapped
def compute_precision_recall(gold_standard,
bin_id_to_list_of_sequence_id,
bin_id_to_mapped_genome,
bin_id_to_genome_id_to_total_length,
mapped):
bin_id_to_total_lengths = {}
for predicted_bin in bin_id_to_list_of_sequence_id:
for sequence_id in bin_id_to_list_of_sequence_id[predicted_bin]:
if predicted_bin not in bin_id_to_total_lengths:
bin_id_to_total_lengths[predicted_bin] = 0
bin_id_to_total_lengths[predicted_bin] += gold_standard.sequence_id_to_lengths[sequence_id]
bin_metrics = []
for predicted_bin in bin_id_to_list_of_sequence_id:
best_genome_id = bin_id_to_mapped_genome[predicted_bin]
# length of genome in bin divided by bin size
precision = float(bin_id_to_genome_id_to_total_length[predicted_bin][best_genome_id]) / float(bin_id_to_total_lengths[predicted_bin])
recall = float(bin_id_to_genome_id_to_total_length[predicted_bin][best_genome_id]) / float(gold_standard.genome_id_to_total_length[best_genome_id])
bin_metrics.append({'mapped_genome': best_genome_id,
'precision': precision,
'recall': recall,
'predicted_size': bin_id_to_total_lengths[predicted_bin],
'correctly_predicted': bin_id_to_genome_id_to_total_length[predicted_bin][best_genome_id],
'real_size': gold_standard.genome_id_to_total_length[best_genome_id]})
for genome_id in gold_standard.genome_id_to_list_of_contigs:
if genome_id not in mapped:
bin_metrics.append({'mapped_genome': genome_id,
'precision': np.nan,
'recall': .0,
'predicted_size': 0,
'correctly_predicted': 0,
'real_size': gold_standard.genome_id_to_total_length[genome_id]})
# sort bins by recall
return sorted(bin_metrics, key=lambda t: t['recall'], reverse=True)
def compute_metrics(query, gold_standard):
bin_id_to_mapped_genome, bin_id_to_genome_id_to_total_length, mapped = map_genomes(gold_standard,
query.bin_id_to_list_of_sequence_id)
bin_metrics = compute_precision_recall(gold_standard,
query.bin_id_to_list_of_sequence_id,
bin_id_to_mapped_genome,
bin_id_to_genome_id_to_total_length,
mapped)
return bin_metrics
def print_metrics(bin_metrics, stream=sys.stdout):
stream.write("genome\tprecision\trecall\tpredicted_size\tcorrectly_predicted\treal_size\n")
for bin in bin_metrics:
stream.write("%s\t%s\t%s\t%s\t%s\t%s\n" % (
bin['mapped_genome'],
bin['precision'] if not np.isnan(bin['precision']) else 'NA',
bin['recall'],
bin['predicted_size'],
bin['correctly_predicted'],
bin['real_size']))
def main():
parser = argparse.ArgumentParser(description="Compute table of precision and recall per genome bin",
parents=[argparse_parents.PARSER_GS])
args = parser.parse_args()
if not args.gold_standard_file or not args.bin_file:
parser.print_help()
parser.exit(1)
gold_standard = load_data.get_genome_mapping(args.gold_standard_file, args.fasta_file)
query = load_data.open_query(args.bin_file)
bin_metrics = compute_metrics(query, gold_standard)
print_metrics(bin_metrics)
if __name__ == "__main__":
main()