-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathopal.py
executable file
·244 lines (202 loc) · 12.2 KB
/
opal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#!/usr/bin/env python3
import os
import sys
import errno
import argparse
import os.path
import pandas as pd
import numpy as np
import logging
import shlex
from cami_opal import evaluate
from cami_opal import rankings as rk
from cami_opal import html_opal as html
from cami_opal import plots as pl
from cami_opal.utils import load_data
from cami_opal.utils import constants as c
from version import __version__
def make_sure_path_exists(path):
try:
os.makedirs(path)
except OSError as exception:
if exception.errno != errno.EEXIST:
raise
def get_labels(labels, profiles_files):
if labels:
labels_list = [x.strip() for x in labels.split(',')]
if len(labels_list) != len(profiles_files):
logging.getLogger('opal').critical('The number of labels does not match the number of files of profiles. Please check parameter -l, --labels.')
exit(1)
return labels_list
tool_id = []
for profile_file in profiles_files:
tool_id.append(profile_file.split('/')[-1])
return tool_id
def get_time_memory(time, memory, profiles_files):
time_list = []
memory_list = []
if time:
time_list = [float(x.strip()) for x in time.split(',')]
if len(time_list) != len(profiles_files):
logging.getLogger('opal').critical('The number of running times does not match the number of files of profiles. Please check parameter --time.')
exit(1)
if memory:
memory_list = [float(x.strip()) for x in memory.split(',')]
if len(memory_list) != len(profiles_files):
logging.getLogger('opal').critical('The number of memory usages does not match the number of files of profiles. Please check parameter --memory.')
exit(1)
return time_list, memory_list
def print_by_rank(output_dir, labels, pd_metrics):
make_sure_path_exists(os.path.join(output_dir, "by_rank"))
# define ordering of rows, which is given my order of tool labels
order_rows = labels
# define ordering of columns, hard coded
order_columns = [c.SUM_ABUNDANCES, c.UNIFRAC, c.UNW_UNIFRAC, c.L1NORM, c.RECALL, c.PRECISION, c.F1_SCORE, c.TP, c.FP, c.FN, c.OTUS, c.JACCARD, c.SHANNON_DIVERSITY, c.SHANNON_EQUIT, c.BRAY_CURTIS]
if c.FP + c.UNFILTERED_SUF in pd_metrics['metric'].values:
order_columns += [metric + c.UNFILTERED_SUF for metric in order_columns]
for rank in c.ALL_RANKS:
order_columns_rank = order_columns
# subset to information that either belongs to the given rank or is rank independent, i.e. are unifrac values
table = pd_metrics[(pd_metrics['rank'] == rank) | (pd_metrics['metric'].isin([c.UNIFRAC, c.UNW_UNIFRAC, c.UNIFRAC + c.UNFILTERED_SUF, c.UNW_UNIFRAC + c.UNFILTERED_SUF]))]
# reformat the table with a pivot_table
table = table.pivot_table(index=['tool', 'sample'], columns='metric', values='value')
if len(table.columns) < len(order_columns):
order_columns_rank = [x for x in order_columns if x in table.columns]
# select only tools in labels and get rid of gold standard
table = table.loc[pd.IndexSlice[order_rows, :], order_columns_rank]
# define categorical column for ordering rows by tools
table['tool_cat'] = pd.Categorical(table.index.get_level_values('tool'), categories=order_rows, ordered=True)
# order table
table = table.sort_values('tool_cat')
table = table.loc[:, order_columns_rank]
# replace np.NaN with string "na" and write resulting table into a file
table.fillna('na').to_csv(os.path.join(output_dir, "by_rank", rank + ".tsv"), sep='\t')
def print_by_tool(output_dir, pd_metrics):
make_sure_path_exists(os.path.join(output_dir, "by_tool"))
# define ordering of columns, hard coded
order_columns = [c.UNIFRAC, c.UNW_UNIFRAC, c.L1NORM, c.RECALL, c.PRECISION, c.F1_SCORE, c.TP, c.FP, c.FN, c.OTUS, c.JACCARD, c.SHANNON_DIVERSITY, c.SHANNON_EQUIT, c.BRAY_CURTIS]
unifrac_list = [c.UNIFRAC, c.UNW_UNIFRAC]
if c.FP + c.UNFILTERED_SUF in pd_metrics['metric'].values:
order_columns += [metric + c.UNFILTERED_SUF for metric in order_columns]
unifrac_list += [c.UNIFRAC + c.UNFILTERED_SUF, c.UNW_UNIFRAC + c.UNFILTERED_SUF]
for toolname, pd_metrics_tool in pd_metrics.groupby('tool'):
if toolname == c.GS:
continue
table = pd_metrics_tool.pivot_table(index=['rank', 'sample'], columns='metric', values='value')
# little hack to carry unifrac over to every rank
for unifrac_col in unifrac_list:
table[unifrac_col] = pd_metrics_tool[pd_metrics_tool['metric'] == unifrac_col]['value'].values[0]
# order table
table['rank_cat'] = pd.Categorical(table.index.get_level_values('rank'), categories=c.ALL_RANKS, ordered=True)
table = table.sort_values('rank_cat')
table = table.loc[:, order_columns]
# replace np.NaN with string "na" and write resulting table into a file
table.fillna('na').to_csv(os.path.join(output_dir, "by_tool", toolname + ".tsv"), sep='\t')
def create_output_directories(output_dir, labels):
make_sure_path_exists(os.path.join(output_dir, 'gold_standard'))
for label in labels:
make_sure_path_exists(os.path.join(output_dir, "by_tool", label.replace(' ', '_')))
def concat_pd(labels, metric, values, pd_metrics):
df = pd.DataFrame({'tool': labels, 'value': values})
df['sample'] = np.nan
df['metric'] = metric
df['rank'] = np.nan
return pd.concat([pd_metrics, df], ignore_index=True, sort=False)
def concat_time_memory(labels, time_list, memory_list, pd_metrics):
if time_list:
pd_metrics = concat_pd(labels, 'time', time_list, pd_metrics)
if memory_list:
pd_metrics = concat_pd(labels, 'memory', memory_list, pd_metrics)
return pd_metrics
def get_logger(output_dir, silent):
logger = logging.getLogger('opal')
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s')
logging_fh = logging.FileHandler(os.path.join(output_dir, 'log.txt'))
logging_fh.setFormatter(formatter)
logger.addHandler(logging_fh)
logger.info(' '.join(map(shlex.quote, sys.argv)))
if not silent:
logging_stdout = logging.StreamHandler(sys.stdout)
logging_stdout.setFormatter(formatter)
logger.addHandler(logging_stdout)
return logger
def main():
parser = argparse.ArgumentParser(description='OPAL: Open-community Profiling Assessment tooL', add_help=False)
group1 = parser.add_argument_group('required arguments')
group1.add_argument('profiles_files', nargs='+', help='Files of profiles')
group1.add_argument('-g', '--gold_standard_file', help='Gold standard file', required=True)
group1.add_argument('-o', '--output_dir', help='Directory to write the results to', required=True)
group2 = parser.add_argument_group('optional arguments')
group2.add_argument('-n', '--normalize', help='Normalize samples', action='store_true')
group2.add_argument('-f', '--filter', help='Filter out the predictions with the smallest relative abundances summing up to [FILTER]%% within a rank', type=float)
group2.add_argument('-p', '--plot_abundances', help='Plot abundances in the gold standard (can take some minutes)', action='store_true')
group2.add_argument('-l', '--labels', help='Comma-separated profiles names', required=False)
group2.add_argument('-t', '--time', help='Comma-separated runtimes in hours', required=False)
group2.add_argument('-m', '--memory', help='Comma-separated memory usages in gigabytes', required=False)
group2.add_argument('-d', '--desc', help='Description for HTML page', required=False)
group2.add_argument('-r', '--ranks', help='Highest and lowest taxonomic ranks to consider in performance rankings, comma-separated. Valid ranks: superkingdom, phylum, class, order, family, genus, species, strain (default:superkingdom,species)', required=False)
group2.add_argument('--metrics_plot_rel', help='Metrics for spider plot of relative performances, first character, comma-separated. Valid metrics: w:weighted Unifrac, l:L1 norm, c:completeness, p:purity, f:false positives, t:true positives (default: w,l,c,p,f)', required=False)
group2.add_argument('--metrics_plot_abs', help='Metrics for spider plot of absolute performances, first character, comma-separated. Valid metrics: c:completeness, p:purity, b:Bray-Curtis (default: c,p)', required=False)
group2.add_argument('--silent', help='Silent mode', action='store_true')
group2.add_argument('-v', '--version', action='version', version='%(prog)s ' + __version__)
group2.add_argument('-h', '--help', action='help', help='Show this help message and exit')
group3 = parser.add_argument_group('UniFrac arguments')
group3.add_argument('-b', '--branch_length_function', help='UniFrac tree branch length function (default: "lambda x: 1/x", where x=tree depth)', required=False, default='lambda x: 1/x')
group3.add_argument('--normalized_unifrac', help='Compute normalized version of weighted UniFrac by dividing by the theoretical max unweighted UniFrac', action='store_true')
args = parser.parse_args()
output_dir = os.path.abspath(args.output_dir)
make_sure_path_exists(output_dir)
labels = get_labels(args.labels, args.profiles_files)
create_output_directories(output_dir, labels)
logger = get_logger(args.output_dir, args.silent)
logger.info('Loading profiles...')
sample_ids_list, gs_samples_list, profiles_list_to_samples_list = load_data.load_profiles(args.gold_standard_file,
args.profiles_files,
args.normalize)
logger.info('done')
plots_list = []
if args.plot_abundances:
logger.info('Plotting gold standard abundances...')
plots_list += pl.plot_samples_hist(gs_samples_list, sample_ids_list, output_dir)
logger.info('done')
logger.info('Computing metrics...')
pd_metrics, pd_confusion = evaluate.evaluate_main(gs_samples_list,
profiles_list_to_samples_list,
labels,
args.filter,
args.branch_length_function,
args.normalized_unifrac)
time_list, memory_list = get_time_memory(args.time, args.memory, args.profiles_files)
if time_list or memory_list:
pd_metrics = concat_time_memory(labels, time_list, memory_list, pd_metrics)
logger.info('done')
logger.info('Saving computed metrics...')
pd_metrics[['tool', 'rank', 'metric', 'sample', 'value']].fillna('na').to_csv(os.path.join(output_dir, 'results.tsv'), sep='\t', index=False)
pd_confusion.to_csv(os.path.join(output_dir, 'confusion.tsv'), sep='\t', index=False)
print_by_tool(output_dir, pd_metrics)
print_by_rank(output_dir, labels, pd_metrics)
logger.info('done')
logger.info('Creating beta diversity plots...')
plots_list += pl.plot_beta_diversity(gs_samples_list, profiles_list_to_samples_list, sample_ids_list, labels, output_dir)
logger.info('done')
logger.info('Creating rarefaction curves...')
plots_list += pl.plot_rarefaction_curves(gs_samples_list, output_dir)
plots_list += pl.plot_rarefaction_curves(gs_samples_list, output_dir, log_scale=True)
logger.info('done')
logger.info('Creating more plots...')
plots_list += pl.plot_all(pd_metrics, labels, output_dir, args.metrics_plot_rel, args.metrics_plot_abs)
logger.info('done')
logger.info('Computing rankings...')
pd_rankings, ranks_scored = rk.highscore_table(pd_metrics, args.ranks)
logger.info('done')
if time_list or memory_list:
logger.info('Plotting computing efficiency...')
plots_list += pl.plot_time_memory(time_list, memory_list, labels, output_dir)
logger.info('done')
logger.info('Creating HTML page...')
html.create_html(pd_rankings, ranks_scored, pd_metrics, labels, sample_ids_list, plots_list, output_dir, args.desc)
logger.info('done')
logger.info('OPAL finished successfully. All results have been saved to {}'.format(output_dir))
if __name__ == "__main__":
main()