-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.py
98 lines (78 loc) · 2.49 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#
# TensorFlow Image classification prediction server
#
# Author: José Luis Pereira
#
import time
from absl import app, logging
import numpy as np
import tensorflow as tf
from flask import Flask, request, Response, jsonify, send_from_directory, abort
import os
from tensorflow.keras.preprocessing.image import load_img, img_to_array
from tensorflow.keras.models import load_model
# Server configuration
predict_labels = []
model_path = './model/model.h5'
weights_path = './model/weights.h5'
labels_path = './model/labels.txt'
image_width = 300
image_height = 300
port = 5000
# Allow to expand the memory used for the graphic card.
physical_devices = tf.config.experimental.list_physical_devices('GPU')
if len(physical_devices) > 0:
tf.config.experimental.set_memory_growth(physical_devices[0], True)
#Load model
cnn = load_model(model_path)
cnn.load_weights(weights_path)
# Load labels
labels_file = open(labels_path,"r")
for line in labels_file.readlines():
predict_labels.append(line.rstrip())
# Initialize Flask application
app = Flask(__name__)
@app.route('/detections', methods=['POST'])
def get_detections():
raw_images = []
images = request.files.getlist("images")
image_names = []
for image in images:
print(image)
image_name = image.filename
image_names.append(image_name)
image.save(os.path.join(os.getcwd(), image_name))
img_raw = load_img(image_name, target_size=(image_height, image_width))
raw_images.append(img_raw)
num = 0
response = []
for j in range(len(raw_images)):
responses = []
raw_img = raw_images[j]
num+=1
img = img_to_array(raw_img) / 255
img = np.expand_dims(img, axis=0)
t1 = time.time()
array = cnn.predict(img)
result = array[0]
t2 = time.time()
print('time: {}'.format(t2 - t1))
print('detections:')
for index, val in enumerate(result):
responses.append({
"class": predict_labels[index],
"confidence": float("{0:.2f}".format(np.array(result[index])*100))
})
print(responses[index])
response.append({
"image": image_names[j],
"detections": responses
})
for name in image_names:
os.remove(name)
try:
return jsonify({"response":response}), 200
except FileNotFoundError:
abort(404)
if __name__ == '__main__':
app.run(debug=True, host = '0.0.0.0', port=port)