forked from lttam/SobolevTransport
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_SobolevTransport.m
161 lines (119 loc) · 4.06 KB
/
compute_SobolevTransport.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
%
% compute Sobolev transport distance matrix
%
% Choose:
% (1) typeGG = 'RandLLE' (G_Log) or typeGG = 'RandSLE' (G_Sqrt)
% (2) pp=1 or pp=2 (the p-order parameter of Sobolev transport)
%
clear all
clc
typeGG = 'RandLLE'; % log-linear #edges (G_Log)
% typeGG = 'RandSLE'; % sqrt-linear #edges (G_Sqrt)
dsName = 'twitter';
maxKC = 100;
nSS = 20; % #tree (average for Sobolev)
pp = 1;
% pp = 2;
% DD_SS1, 5, 10, 20
load([dsName '_' num2str(maxKC) '_' typeGG '_Graph.mat']);
randSArray = randperm(nGG);
wwGG = GG.Edges.Weight;
DD_SS = cell(nSS, 1);
runTime_Prep = zeros(nSS, 1);
runTime_Dist = zeros(nSS, 1);
for idSS = 1:nSS
% ------- FOR EACH S0 (randomly choose) ---------
s0 = randSArray(idSS);
tic
disp(['...[' num2str(idSS) '] compute the tree path']);
% tree path!!!
[trPP, trDD, trEP] = shortestpathtree(GG, s0, 'OutputForm', 'cell');
disp(['...[' num2str(idSS) '] vector representation for each vertex']);
% ---------------
% ===For GRAPH===
% vector representation for each vertex 1 --> nGG
disp('......vector representation for each vertex');
% length(wwGG): #edges in graph GG (can be reduced into #edges in tree)
vecGG_VV = zeros(nGG, length(wwGG));
for ii = 1:nGG % each vertex in graph
vecGG_VV(ii, trEP{ii}) = 1;
end
% V2: extract ---> TREE
sumEdgeVal = sum(vecGG_VV, 1);
idNZ = find(sumEdgeVal>0);
vecGG_VV_TR = vecGG_VV(:, idNZ); % spare version of vecGG_VV
wwGG_TR = wwGG(idNZ);
disp('......vector representation for each distribution');
% ===For Data===
% N: #samples (input data)
% Input: WW,
% V2: --> spare version
XX_SI = zeros(N, length(idNZ));
for ii = 1:N % each distribution
tmpWW = WW{ii}/sum(WW{ii}); % normalization for weight!!!
tmpXX = XX_ID{ii};
tmpXX_GG_TR = vecGG_VV_TR(tmpXX, :);
tmpWW_GG_TR = repmat(tmpWW, 1, length(idNZ));
tmpWWXX = tmpXX_GG_TR .* tmpWW_GG_TR;
XX_SI(ii, :) = sum(tmpWWXX, 1);
end
runTime_Prep(idSS) = toc;
tic
% compute the Lp distance matrix
DD_SS_II = zeros(N, N);
for ii = 1:(N-1)
% ii --> (ii+1):N
if mod(ii, 20) == 0
disp(['...' num2str(ii)]);
end
tmpII_vec = XX_SI(ii, :);
tmpJJ_mat = XX_SI((ii+1):N, :);
tmpII_mat = repmat(tmpII_vec, N-ii, 1);
tmpAbsDD_mat = abs(tmpII_mat - tmpJJ_mat);
if pp > 1
tmpPP_AbsDD_mat = tmpAbsDD_mat.^pp;
else
tmpPP_AbsDD_mat = tmpAbsDD_mat;
end
wwGG_TR_mat = repmat(wwGG_TR', N-ii, 1);
% --
tmpWWPP_AbsDD_mat = wwGG_TR_mat .* tmpPP_AbsDD_mat;
tmpPP_DD_vec = sum(tmpWWPP_AbsDD_mat, 2); % sum over rows --> column
if pp > 1
tmpDD_vec = tmpPP_DD_vec.^(1/pp);
else
tmpDD_vec = tmpPP_DD_vec;
end
DD_SS_II(ii, (ii+1):N) = tmpDD_vec';
DD_SS_II((ii+1):N, ii) = tmpDD_vec;
end
runTime_Dist(idSS) = toc;
% save distance matrix
DD_SS{idSS} = DD_SS_II;
end
runTime_Prep_Avg = sum(runTime_Prep) / nSS;
runTime_Dist_Avg = sum(runTime_Dist) / nSS;
runTime_Dist_ALL = runTime_Prep + runTime_Dist;
runTime_Dist_ALL_Avg = sum(runTime_Dist_ALL) / nSS;
% Average
tmpNN = [1, 5, 10, 20];
tmpDDSS_Cell = cell(length(tmpNN), 1);
for iiRR = 1:length(tmpNN)
tmpDDSS = zeros(N, N);
for ii = 1:tmpNN(iiRR)
tmpDDSS = tmpDDSS + DD_SS{ii};
end
tmpDDSS = tmpDDSS / tmpNN(iiRR);
tmpDDSS_Cell{iiRR} = tmpDDSS;
end
DD_SS1 = tmpDDSS_Cell{1};
DD_SS5 = tmpDDSS_Cell{2};
DD_SS10 = tmpDDSS_Cell{3};
DD_SS20 = tmpDDSS_Cell{4};
outName = [dsName '_Sobolev_V2_' num2str(maxKC) '_' typeGG '_S' num2str(nSS) 'P' num2str(pp) '.mat'];
save(outName, 'DD_SS1', 'DD_SS5', 'DD_SS10', 'DD_SS20', ...
'runTime_Dist', 'runTime_Prep', 'runTime_Dist_ALL', ...
'runTime_Dist_Avg', 'runTime_Prep_Avg', 'runTime_Dist_ALL_Avg', ...
'randSArray', 'pp', 'nSS', ...
'YY');
disp('FINISH !!!');