-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathneuralnet.h
76 lines (55 loc) · 2 KB
/
neuralnet.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#include "new_baseclass.h"
/******************************************************************* CNeuron */
class CNeuron : public class_new_baseclass
{
public:
int m_num_inputs;
double *m_weights;
CNeuron(void): m_num_inputs(0), m_weights(NULL) {}
CNeuron(int num_inputs, double in_weights[]);
int get_num_inputs(void) const { return m_num_inputs; }
static int calc_needed_weights(int num_inputs);
};
/************************************************************** CNeuronLayer */
class CNeuronLayer : public class_new_baseclass
{
public:
int m_num_neurons;
CNeuron *m_neurons;
CNeuronLayer(void): m_num_neurons(0), m_neurons(NULL) {}
CNeuronLayer(int num_neurons, int num_inputs_per_neuron, CNeuron in_neurons[], double in_weights[]);
int get_num_neurons(void) const { return m_num_neurons; }
static int calc_needed_weights(int num_neurons, int num_inputs_per_neuron);
};
/**************************************************************** CNeuralNet */
class CNeuralNet : public class_new_baseclass
{
private:
int m_num_inputs;
int m_num_outputs;
int m_num_hidden;
int m_num_neurons_per_hidden;
int m_widest_weight_array;
int m_widest_layer;
double m_bias;
double m_activation_response;
int m_num_layers;
CNeuronLayer *m_layers;
int m_num_weights;
double *m_weights;
int m_num_neurons;
CNeuron *m_neurons;
double *run_internal(const double orig_inputs[], double target_outputs[], double *ptr1, double *ptr2) const;
public:
CNeuralNet(int num_inputs, int num_outputs, int num_hidden, int num_neurons_per_hidden);
~CNeuralNet(void);
int get_num_weights(void) const { return m_num_weights; }
int get_num_inputs(void) const { return m_num_inputs; }
int get_num_outputs(void) const { return m_num_outputs; }
void reset_weights_random(void);
double *get_weights(double weights[]) const;
void put_weights(double weights[]);
double *run(const double inputs[], double outputs[]) const;
double *run(const double inputs[], double outputs[], const double scales[]) const;
void print(void) const;
};