-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
359 lines (330 loc) · 18.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
# Copyright (c) 2020-present, Royal Bank of Canada.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from tqdm import tqdm
from torch.utils.data import DataLoader
import argparse
import torch
from model import Model
import numpy as np
from torch.utils.tensorboard import SummaryWriter
import pickle
from booster.utils import EMA
from torch.optim.lr_scheduler import ExponentialLR, LambdaLR
from evaluation.evaluation import evaluate
from evaluation.compute_eval_metrics import compute_metric
from utils import compute_loss, get_next_batch
import os
from evaluation.evaluation import generate_hypothesis
from utils import generate_model_name
from torch.nn.utils.rnn import pad_sequence
from dataset_preprocessing.django import Django
from dataset_preprocessing.conala import Conala
from dataset_preprocessing.small_sql import SmallSQL
from dataset_preprocessing.wikisql.wikisql import Wikisql
dataset_classes = {'django': Django,
'conala': Conala,
'atis': SmallSQL,
'geography': SmallSQL,
'wikisql': Wikisql}
def load_dataset(args, tokenizer):
splits = ['train', 'dev', 'test']
datasets = []
for split in splits:
dataset = dataset_classes[args.dataset_name](args.dataset_name, split, tokenizer, args)
datasets.append(dataset)
return (*datasets,) if len(datasets) > 1 else dataset
def preprocess_batch(data):
data_intents = [d['intent'] for d in data]
data_snippets = [d['snippet'] for d in data]
keys = ['input_ids', 'attention_mask', 'token_type_ids']
source_dict = {key: pad_sequence([torch.tensor(d[key]) for d in data_intents], batch_first=True, padding_value=0)
for key in keys}
target_dict = {key: pad_sequence([torch.tensor(d[key]) for d in data_snippets], batch_first=True, padding_value=0)
for key in keys}
extra_info = {}
if args.pointer_network:
source_dict['source_label'] = pad_sequence([torch.tensor(d['source_label']) for d in data_intents],
batch_first=True, padding_value=0)
data_choices = [d['choices'] for d in data]
extra_info['choices'] = {key: pad_sequence([torch.tensor(d[key]) for d in data_choices], batch_first=True, padding_value=0)
for key in keys}
extra_info['label'] = pad_sequence([torch.tensor(d['label']) for d in data], batch_first=True, padding_value=0)
return {'source': source_dict, 'target': target_dict, **extra_info}
def print_dataset_length_info(train_dataset):
length = []
for i in range(len(train_dataset)):
length.append(len(train_dataset[i]['intent']['input_ids']))
print("min", min(length))
print("max", max(length))
length = np.array(length)
print('std', np.std(length))
print('mean', np.mean(length))
def train(args):
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
pretrained_weights = "bert-base-uncased"
model = Model(pretrained_weights, args)
params_except_encoder = []
for name, p in model.named_parameters():
if not name.startswith('encoder.'):
params_except_encoder.append(p)
decoder_optimizer = torch.optim.Adam(lr=args.decoder_lr, params=params_except_encoder)
encoder_optimizer = torch.optim.Adam(lr=args.encoder_lr, params=model.encoder.parameters())
encoder_scheduler = ExponentialLR(encoder_optimizer, gamma=1)
decoder_scheduler = LambdaLR(decoder_optimizer, lr_lambda=lambda step: (step+1)/args.warmup_steps if step<args.warmup_steps else args.lr_decay**(step-args.warmup_steps))
model.to(args.device)
if args.EMA:
ema_model = EMA(model, args.ema_param)
train_dataset, valid_dataset, test_dataset = load_dataset(args, model.tokenizer)
print_dataset_length_info(train_dataset)
if args.small_dataset:
train_dataset = train_dataset[:round(len(train_dataset)*args.percentage/100)]
else:
args.percentage = 100
if args.copy_bt:
args.batch_size = int(args.batch_size//(1+args.monolingual_ratio))
print("Effective batch size", args.batch_size)
model_name = generate_model_name(args)
print("model name", model_name)
writer = SummaryWriter(log_dir=args.save_dir+'/logs/{}/'.format(model_name) + model_name[:-4])
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers, pin_memory=True, collate_fn=preprocess_batch)
valid_loader = DataLoader(valid_dataset, batch_size=args.valid_batch_size, shuffle=False,
num_workers=args.num_workers, pin_memory=True, collate_fn=preprocess_batch)
if args.copy_bt:
copy_dataset = dataset_classes[args.dataset_name](name=args.dataset_name, split='train', tokenizer=model.tokenizer, args=args, monolingual=True)
copy_loader = DataLoader(copy_dataset, batch_size=int(args.batch_size * args.monolingual_ratio),
shuffle=True, num_workers=args.num_workers, pin_memory=True, collate_fn=preprocess_batch)
copy_iter = iter(copy_loader)
print('copy dataset size', len(copy_dataset))
print('train set size:', len(train_dataset))
print('dev set size', len(valid_dataset))
print('test set size', len(test_dataset))
print("example of parallel data")
print(model.tokenizer.decode(train_dataset[0]['intent']['input_ids']))
print(model.tokenizer.decode(train_dataset[0]['snippet']['input_ids']))
if args.copy_bt:
print(len(copy_dataset))
print("example of monolingual data")
print(model.tokenizer.decode(copy_dataset[0]['intent']['input_ids']))
print(model.tokenizer.decode(copy_dataset[0]['snippet']['input_ids']))
resume_file = os.path.join(args.save_dir, 'resume.pth')
if not args.just_evaluate:
if os.path.exists(resume_file):
print("resume is loaded")
checkpoint = torch.load(resume_file)
model.load_state_dict(checkpoint['model_to_evaluate'])
ema_model = EMA(model, args.ema_param)
model.load_state_dict(checkpoint['model_to_train'])
if not args.no_encoder:
encoder_optimizer.load_state_dict(checkpoint['enc_optimizer_state'])
decoder_optimizer.load_state_dict(checkpoint['dec_optimizer_state'])
best_criteria = checkpoint['best_criteria']
begin_epoch = checkpoint['epoch']
early_stopping = checkpoint['early_stopping']
else:
best_criteria = -float('inf')
begin_epoch = 0
early_stopping = 0
for epoch in range(begin_epoch, args.epochs):
averaged_loss = 0
print('Epoch :', epoch + 1, "Early Stopping:", early_stopping,
"encoder lr: ", encoder_scheduler.get_lr() if not args.no_encoder else "no encoder",
"decoder_lr", decoder_scheduler.get_lr())
model.train()
for data in tqdm(train_loader):
loss, logits, choices = compute_loss(args, data, model)
loss = loss.sum(1)
if args.copy_bt:
copy_data = None
if args.copy_bt:
copy_data, copy_iter = get_next_batch(iterator=copy_iter, loader=copy_loader)
copy_data['source'] = copy_data['target']
loss_bt, _, _ = compute_loss(args, copy_data, model, no_context_update=args.no_encoder_update_for_bt)
loss = torch.cat([loss, loss_bt.sum(1)], dim=0)
if args.copy_bt:
del copy_data
loss = loss.mean()
averaged_loss += loss.item()*len(data['source']['input_ids'])
encoder_optimizer.zero_grad()
decoder_optimizer.zero_grad()
loss.backward()
encoder_optimizer.step()
decoder_optimizer.step()
if args.EMA:
ema_model.update()
decoder_scheduler.step()
encoder_scheduler.step()
averaged_loss = averaged_loss / len(train_loader.dataset)
writer.add_scalar('Loss/train', averaged_loss, epoch)
with torch.no_grad():
model_to_evaluate = ema_model.model if args.EMA else model
validation_loss = evaluate(args, valid_loader, model_to_evaluate, split='dev')
print('validation loss', validation_loss)
if (epoch + 1) % args.eval_interval == 0:
greedy_hype = generate_hypothesis(args, valid_loader, model_to_evaluate, search='greedy')
metrics = compute_metric(greedy_hype, args.dataset_name, split='dev', tokenizer=model.tokenizer, args=args)
writer.add_scalar('Loss/dev', validation_loss, epoch)
print('exact match accuracy', metrics['exact_match'])
print('bleu:', metrics['bleu'])
criteria = metrics['exec_acc'] if args.dataset_name == 'wikisql' \
else metrics['bleu'] if (args.dataset_name == 'conala' or args.dataset_name == 'magic')\
else metrics['exact_match']
print("criteria", criteria)
writer.add_scalar('evaluation metric', criteria, epoch)
if args.early_stopping:
if best_criteria < criteria:
best_criteria = criteria
torch.save(model_to_evaluate.state_dict(), os.path.join(args.save_dir, model_name))
early_stopping = 0
else:
early_stopping += 1
if early_stopping >= args.early_stopping_epochs:
break
else:
torch.save(model_to_evaluate.state_dict(), os.path.join(args.save_dir, model_name))
print("resume.pth is saved")
torch.save({
'epoch': epoch+1,
'model_to_evaluate': model_to_evaluate.state_dict(),
'model_to_train': model.state_dict(),
'enc_optimizer_state': encoder_optimizer.state_dict() if not args.no_encoder else None,
'dec_optimizer_state': decoder_optimizer.state_dict(),
'best_criteria': best_criteria,
'early_stopping': early_stopping
}, resume_file)
with torch.no_grad():
model.load_state_dict(torch.load(os.path.join(args.save_dir, model_name)))
model.eval()
valid_loader = DataLoader(valid_dataset, batch_size=args.test_batch_size, shuffle=False,
num_workers=args.num_workers, pin_memory=True, collate_fn=preprocess_batch)
test_loader = DataLoader(test_dataset, batch_size=args.test_batch_size, shuffle=False,
num_workers=args.num_workers, pin_memory=True, collate_fn=preprocess_batch)
loader = {'train': train_loader, 'dev': valid_loader, 'test': test_loader}
for split in ['dev', 'test']:
for search in ['greedy', 'beam']:
file = os.path.join(args.save_dir, 'hype_{}_{}.pt'.format(split, search))
if os.path.exists(file):
generated_set = pickle.load(open(file, 'rb'))
else:
generated_set = generate_hypothesis(args, loader[split], model, search=search)
with open(file, 'wb') as f:
pickle.dump(generated_set, f)
metrics = compute_metric(generated_set, args.dataset_name, split=split, tokenizer=model.tokenizer, args=args)
print('{} {} accuracy'.format(split, search), metrics['exact_match'])
if search == 'beam':
print('{} {} oracle accuracy'.format(split, search), metrics['exact_oracle_match'])
print('{} {} bleu score'.format(split, search), metrics['bleu'])
print("{} {} exececution accuracy".format(split, search), metrics['exec_acc'])
writer.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('--epochs', type=int, default=200)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--encoder_lr', type=float, default=1e-5)
parser.add_argument('--decoder_lr', type=float, default=7.5e-5)
parser.add_argument('--lambd', type=float, default=1)
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--decoder_layers', type=int, default=4)
parser.add_argument('--dataset_name', type=str, default='wikisql')
parser.add_argument('--save_dir', type=str, default='/home/sajad/pretrain_sp_decocder')
parser.add_argument('--just_evaluate', action='store_true', default=False)
parser.add_argument('--just_initialize', action='store_true', default=False)
parser.add_argument('--auxilary_lm', action='store_true', default=False)
parser.add_argument('--valid_batch_size', type=int, default=50)
parser.add_argument('--test_batch_size', type=int, default=32)
parser.add_argument('--beam_num', type=int, default=10)
parser.add_argument('--beam_search_base', type=int, default=3)
parser.add_argument('--beam_search_alpha', type=float, default=0.9)
parser.add_argument('--extra_encoder_layers', type=int, default=1)
parser.add_argument('--early_stopping_epochs', type=int, default=20)
parser.add_argument('--eval_interval', type=int, default=1)
parser.add_argument('--percentage', type=int, default=10)
parser.add_argument('--language_model', action='store_true', default=False)
parser.add_argument('--use_authentic_data', action='store_true', default=False)
parser.add_argument('--use_tagged_back', action='store_true', default=False)
parser.add_argument('--extra_encoder', action='store_true', default=False)
parser.add_argument('--small_dataset', action='store_true', default=False)
parser.add_argument('--combined_eval', action='store_true', default=False)
parser.add_argument('--use_real_source', action='store_true', default=False)
parser.add_argument('--combined_training', action='store_true', default=False)
parser.add_argument('--create_mapping', action='store_true', default=False)
parser.add_argument('--pointer_network', action='store_true', default=False)
parser.add_argument('--gating', action='store_true', default=False)
parser.add_argument('--extra_linear', action='store_true', default=True)
parser.add_argument('--extra_copy_attention_linear', action='store_true', default=True)
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--num_workers', type=int, default=4)
parser.add_argument('--monolingual_ratio', type=float, default=1.)
parser.add_argument('--beta', type=float, default=1.)
parser.add_argument('--temp', type=float, default=1.)
parser.add_argument('--mono_min_prob', type=float, default=.1)
parser.add_argument('--label_smoothing', type=float, default=.1)
parser.add_argument('--translate_backward', action='store_true', default=False)
parser.add_argument('--copy_bt', action='store_true', default=False)
parser.add_argument('--add_noise', action='store_true', default=False)
parser.add_argument('--use_back_translation', action='store_true', default=False)
parser.add_argument('--generate_back_translation', action='store_true', default=False)
parser.add_argument('--no_encoder_update_for_bt', action='store_true', default=False)
parser.add_argument('--just_analysis', action='store_true', default=False)
parser.add_argument('--early_stopping', action='store_true', default=False)
parser.add_argument('--use_copy_attention', action='store_true', default=True)
parser.add_argument('--dummy_source', action='store_true', default=False)
parser.add_argument('--dummy_question', action='store_true', default=False)
parser.add_argument('--python', action='store_true', default=False)
parser.add_argument('--EMA', action='store_true', default=True)
parser.add_argument('--random_encoder', action='store_true', default=False)
parser.add_argument('--sql_augmentation', action='store_true', default=False)
parser.add_argument('--sql_where_augmentation', action='store_true', default=False)
parser.add_argument('--use_column_type', action='store_true', default=False)
parser.add_argument('--use_codebert', action='store_true', default=False)
parser.add_argument('--fixed_copy', action='store_true', default=False)
parser.add_argument('--combine_copy_with_real', action='store_true', default=False)
parser.add_argument('--no_schema', action='store_true', default=False)
parser.add_argument('--no_linear_opt', action='store_true', default=False)
parser.add_argument('--fix_linear_layer', action='store_true', default=False)
parser.add_argument('--use_gelu', action='store_true', default=True)
parser.add_argument('--ema_param', type=float, default=.999)
parser.add_argument('--bleu_threshold', type=float, default=0)
parser.add_argument('--lr_decay', type=float, default=1)
parser.add_argument('--n', type=int, default=256)
parser.add_argument('--warmup_steps', type=int, default=0)
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (4096, rlimit[1]))
args = parser.parse_args()
if args.dataset_name == 'django' or args.dataset_name == 'conala':
args.python = True
elif args.dataset_name == 'wikisql':
if not args.translate_backward:
args.pointer_network = True
args.beam_num = 5
args.test_batch_size = 100
args.valid_batch_size = 100
args.eval_interval = 5
args.beam_search_base = 0
args.beam_search_alpha = 1
args.early_stopping_epochs = args.early_stopping_epochs//args.eval_interval+1
if args.small_dataset is False:
args.epochs = 10
else:
args.epochs = 100
elif args.dataset_name =='magic':
args.eval_interval = 5
elif args.dataset_name in ['atis', 'geo', 'imdb', 'scholar', 'advising', 'academic']:
args.beam_search_base = 0
args.beam_search_alpha = 1
else:
raise Exception("Wrong Dataset Name!")
args.no_encoder = False
if args.language_model:
args.no_encoder = True
if args.generate_back_translation:
args.translate_backward = True
print(args)
train(args)