-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathtest_any_image_pose.py
executable file
·577 lines (500 loc) · 25.9 KB
/
test_any_image_pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
"""
Train a control net
"""
import os
import sys
import argparse
import datetime
import numpy as np
import pdb
# # torch
import torch
from torch.utils.data import DataLoader
from torchvision.utils import make_grid, save_image
from torchvision import transforms as T
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
# #from ema_pytorch import EMA
# import kornia
# # distributed
import torch.distributed as dist
from torch.distributed.optim import ZeroRedundancyOptimizer
from torch.nn.parallel import DistributedDataParallel as DDP
# # data
from dataset.hdfs_io import hcopy, hexists
from dataset.transforms import RemoveWhite, CenterCrop
# # utils
from utils.checkpoint import load_from_pretrain, save_checkpoint_ema
from utils.utils import set_seed, count_param, print_peak_memory, anal_tensor
from utils.lr_scheduler import LambdaLinearScheduler
from dataset.hdfs_io import hexists, hmkdir, hopen, hcopy
from langdetect import detect
# # model
from model_lib.ControlNet.cldm.model import create_model, instantiate_from_config
import copy
import torchvision.transforms as transforms
from PIL import Image
import imageio
def center_crop_to_512(image_path):
# Read the image from the local path
image = Image.open(image_path)
# Define the transformation to center crop to 512x512
transform = transforms.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.RandomResizedCrop(
512,
scale=(1.0, 1.0), ratio=(1., 1.),
interpolation=T.InterpolationMode.BILINEAR),
T.ToTensor(),
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# Apply the transformation
cropped_image = transform(image)
return cropped_image
def center_crop_pose_to_512(image_path):
# Read the image from the local path
image = Image.open(image_path)
# Define the transformation to center crop to 512x512
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.RandomResizedCrop(
512,
scale=(1.0, 1.0), ratio=(1., 1.),
interpolation=T.InterpolationMode.BILINEAR),
T.ToTensor(),
])
# Apply the transformation
cropped_image = transform(image)
return cropped_image
def tensor_to_image(tensor):
# Assuming tensor shape is [1, 3, 64, 64]
# Convert the tensor to a numpy array and move the channel dimension to the last axis
image_np = tensor.squeeze(0).permute(1, 2, 0).cpu().numpy()
# Rescale the values from [-1, 1] to [0, 255]
image_np = ((image_np + 1) * 0.5 * 255).astype('uint8')
return Image.fromarray(image_np)
def build_mask_image(image,mask):
binary_mask = torch.where(mask <= 0, 0.0, 1.0)
result = binary_mask * image
return (1.0 - binary_mask)[:,0,...].unsqueeze(1), result
TORCH_VERSION = torch.__version__.split(".")[0]
FP16_DTYPE = torch.float16 if TORCH_VERSION == "1" else torch.bfloat16
print(f"TORCH_VERSION={TORCH_VERSION} FP16_DTYPE={FP16_DTYPE}")
def is_english(text):
try:
lang = detect(text)
return lang == 'en'
except:
return False
def write_list_to_file(lst, filename):
with open(filename, 'w') as file:
for item in lst:
file.write(item + '\n')
def load_state_dict(model, ckpt_path, reinit_hint_block=False, strict=True, map_location="cpu"):
print(f"Loading model state dict from {ckpt_path} ...")
state_dict = load_from_pretrain(ckpt_path, map_location=map_location)
state_dict = state_dict.get('state_dict', state_dict)
if reinit_hint_block:
print("Ignoring hint block parameters from checkpoint!")
for k in list(state_dict.keys()):
if k.startswith("control_model.input_hint_block"):
state_dict.pop(k)
model.load_state_dict(state_dict, strict=strict)
del state_dict
def get_cond_inpaint(model, batch_data, device, batch_size=None, blank_mask=False):
randommask = batch_data["randommask"][:batch_size]
if blank_mask:
randommask = torch.ones_like(randommask)
masked_image = batch_data["image"][:batch_size] * (1-randommask)
image = model.get_first_stage_encoding(model.encode_first_stage(masked_image.to(device)))
mask = torch.nn.functional.interpolate(randommask.to(device), size=image.shape[-2:])
inpaint = torch.cat((mask, image), 1)
return inpaint, masked_image
def get_cond_control(args, batch_data, control_type, device, model=None, batch_size=None, train=True, pose_transfer=False, batch_data_2=None):
control_type = copy.deepcopy(control_type)[0]
if control_type == "body+hand+face" :
if train:
raise NotImplementedError
else:
if args.local_cond_image_path is not None:
cond_image = center_crop_to_512(args.local_cond_image_path).unsqueeze(0).cuda()
else:
raise NotImplementedError
if args.local_pose_path is not None:
pose_map_list = []
for pose_map_name in sorted(os.listdir(args.local_pose_path)):
pose_map = center_crop_pose_to_512(os.path.join(args.local_pose_path, pose_map_name)).unsqueeze(0)
pose_map_list.append(pose_map)
c_cat_list = [pose_map for pose_map in pose_map_list]
cond_image = model.get_first_stage_encoding(model.encode_first_stage(cond_image))
cond_img_cat = cond_image
else:
raise NotImplementedError(f"cond_type={control_type} not supported!")
if train:
raise NotImplementedError
else:
return_list = []
for c_cat in c_cat_list:
if args.control_dropout > 0:
mask = torch.rand((c_cat.shape[0],1,1,1)) > args.control_dropout
c_cat = c_cat * mask.type(torch.float32).to(device)
# pdb.set_trace()
return_list.append([c_cat[:batch_size]])
# pdb.set_trace()
return return_list, [cond_img_cat[:batch_size].to(device) ]
def visualize(args, name, batch_data, tb_writer, infer_model, global_step, nSample, nTest=1, pose_transfer=False, batch_data_2=None):
gen_image_path = os.path.join(args.local_image_dir,str(global_step),'gen_images')
gt_image_path = os.path.join(args.local_image_dir,str(global_step),'gt_images')
pose_map_path = os.path.join(args.local_image_dir,str(global_step),'pose_maps')
os.makedirs(gen_image_path,exist_ok=True)
os.makedirs(gt_image_path,exist_ok=True)
os.makedirs(pose_map_path,exist_ok=True)
infer_model.eval()
if args.pose_transfer:
real_image_list = [real_image for real_image in batch_data_2["image_list"]]
else:
pass
rec_image_list = []
text = [""] * nSample
if not args.with_text:
for i in range(len(text)):
text[i] = ""
if args.text_prompt is not None:
for i in range(len(text)):
text[i] = args.text_prompt
c_cat_list, cond_img_cat = get_cond_control(args, batch_data, args.control_type, args.device, model=infer_model, batch_size=nSample, train=False, pose_transfer=pose_transfer, batch_data_2=batch_data_2)
c_cross = infer_model.get_learned_conditioning(text)[:nSample]
uc_cross = infer_model.get_unconditional_conditioning(nSample)
gene_img_list = []
pose_map_list = []
noise_shape = (nSample, infer_model.channels, infer_model.image_size, infer_model.image_size)
noise = torch.randn(noise_shape).cuda()
if args.local_cond_image_path is not None:
cond_image = center_crop_to_512(args.local_cond_image_path).unsqueeze(0)
else:
cond_image = batch_data["condition_image"]
cond_grid = make_grid(cond_image.float().clamp(-1,1).cpu().add(1).mul(0.5), nrow=1)
save_image(cond_grid, os.path.join(args.local_image_dir,str(global_step),"condition.jpg"))
print("c_cat_list len: ", len(c_cat_list))
for img_num in range(len(c_cat_list)):
pose_input = c_cat_list[img_num][0].cuda()
print("Generate Image {} in {} images".format(img_num,len(c_cat_list)))
c = {"c_concat": [pose_input], "c_crossattn": [c_cross], "image_control":cond_img_cat}
if args.control_mode == "controlnet_important":
uc = {"c_concat": [pose_input], "c_crossattn": [uc_cross]}
else:
uc = {"c_concat": [pose_input], "c_crossattn": [uc_cross], "image_control":cond_img_cat}
if args.wonoise:
c['wonoise'] = True
uc['wonoise'] = True
else:
c['wonoise'] = False
uc['wonoise'] = False
c['overlap_sampling'] = False
uc['overlap_sampling'] = False
pose_map_list.append(c_cat_list[img_num][0][:,:3].cpu())
if args.inpaint_unet:
inpaint, masked_image = get_cond_inpaint(infer_model, batch_data, args.device, batch_size=nSample, blank_mask=False)
inpaint_list = [masked_image.cpu()]
else:
inpaint = None
inpaint_list = []
# generate images
with torch.cuda.amp.autocast(enabled=args.use_fp16, dtype=FP16_DTYPE):
infer_model.to(args.device)
infer_model.eval()
gene_img, _ = infer_model.sample_log(cond=c,
batch_size=nSample, ddim=True,
ddim_steps=50, eta=args.eta,
unconditional_guidance_scale=7,
unconditional_conditioning=uc,
inpaint=inpaint,
x_T=noise,
)
gene_img = infer_model.decode_first_stage( gene_img )
next_cond = copy.deepcopy(gene_img)
gene_img_list.append(gene_img.clamp(-1, 1).cpu())
gen_grid = make_grid(gene_img.float().clamp(-1,1).cpu().add(1).mul(0.5), nrow=1)
pose_grid = make_grid(c_cat_list[img_num][0][:,:3].float().clamp(-1,1).cpu().add(1).mul(0.5), nrow=1)
save_image(gen_grid, os.path.join(gen_image_path,f"{img_num:03d}.jpg"))
save_image(pose_grid, os.path.join(pose_map_path,f"{img_num:03d}.jpg"))
os.makedirs(os.path.join(args.local_image_dir,str(global_step),'gif'),exist_ok=True)
del gene_img_list
del pose_map_list
del rec_image_list
def replace_keys_in_state_dict(state_dict,str1,str2):
new_state_dict = {}
for key, value in state_dict.items():
if str1 in key:
new_key = key.replace(str1, str2)
new_state_dict[new_key] = value
else:
new_state_dict[key] = value
return new_state_dict
def merge_state_dict(image_state_dict,pose_state_dict_new):
for key, value in pose_state_dict_new.items():
if "pose_control_model" in key:
image_state_dict[key] = value
else:
continue
return image_state_dict
def load_state_dict_image_pose(model, image_ckpt_path, pose_ckpt_path, strict=False, map_location="cpu"):
print(f"Loading appearance model state dict from {image_ckpt_path} ...")
print(f"Loading pose model state dict from {pose_ckpt_path} ...")
state_dict = load_from_pretrain(image_ckpt_path, map_location=map_location)
state_dict = state_dict.get('state_dict', state_dict)
image_state_dict = replace_keys_in_state_dict(state_dict,"control_model","appearance_control_model")
pose_state_dict = load_from_pretrain(pose_ckpt_path, map_location=map_location)
pose_state_dict = pose_state_dict.get('state_dict', pose_state_dict)
pose_state_dict_new = replace_keys_in_state_dict(pose_state_dict,"control_model","pose_control_model")
state_dict_final = merge_state_dict(image_state_dict,pose_state_dict_new)
model.load_state_dict(state_dict_final, strict=strict)
del state_dict, image_state_dict, pose_state_dict, pose_state_dict_new, state_dict_final
def estimate_deviation(args, infer_model, tb_writer, global_step):
def _calc_dist(model1, model2, keyword, replace=None):
with torch.no_grad():
model1 = model1.state_dict()
model2 = model2.state_dict()
if replace is None: replace = lambda x: x
distance = 0
keys = [k for k in model1.keys() if keyword in k and replace(k) in model2.keys()]
for k in keys:
distance += (model1[k].float() - model2[replace(k)].float()).pow(2).sum()
return distance / len(keys)
if args.local_rank == 0:
log_output = "Deviation: "
def main(args):
# ******************************
# initialize training
# ******************************
# assign rank
args.world_size = int(os.environ['WORLD_SIZE'])
args.local_rank = int(os.environ['LOCAL_RANK'])
args.rank = int(os.environ['RANK'])
args.device = torch.device("cuda", args.local_rank)
os.makedirs(args.local_image_dir,exist_ok=True)
os.makedirs(args.local_log_dir,exist_ok=True)
if args.rank == 0:
print(args)
# initial distribution comminucation
dist.init_process_group("nccl", rank=args.rank, world_size=args.world_size)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True
# set seed for reproducibility
set_seed(args.seed)
# visdom / tensorboard
if args.rank == 0:
tb_writer = SummaryWriter(log_dir=args.local_log_dir)
else:
tb_writer = None
# ******************************
# create model
# ******************************
model = create_model(args.model_config).cpu()
model.sd_locked = args.sd_locked
model.only_mid_control = args.only_mid_control
model.to(args.local_rank)
if args.local_rank == 0:
print('Total base parameters {:.02f}M'.format(count_param([model])))
# ******************************
# load pre-trained models
# ******************************
optimizer_state_dict = None
global_step = args.global_step
if args.image_pretrain_dir.endswith(".th"):
print('find model state dict from {} ...'.format(args.image_pretrain_dir))
if args.local_rank == 0:
assert hexists(args.image_pretrain_dir)
load_state_dict(model, args.image_pretrain_dir,strict=True)
else:
print('find optimizer state dict from {} ...'.format(os.path.join(args.image_pretrain_dir, "optimizer_state_latest.th")))
optimizer_state_dict = load_from_pretrain(os.path.join(args.image_pretrain_dir, "optimizer_state_latest.th"), map_location="cpu")
if global_step == 0:
global_step = optimizer_state_dict["step"]
optimizer_state_dict = None
if args.local_rank == 0:
assert hexists(os.path.join(args.image_pretrain_dir, f"model_state-{global_step}.th"))
load_state_dict(model, os.path.join(args.image_pretrain_dir, f"model_state-{global_step}.th"),strict=True)
global_step = 0
torch.cuda.empty_cache()
# ******************************
# create DDP model
# ******************************
if args.compile and TORCH_VERSION == "2":
model = torch.compile(model)
torch.cuda.set_device(args.local_rank)
model = DDP(model,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
bucket_cap_mb=128,
find_unused_parameters=True,
gradient_as_bucket_view=True # will save memory
)
print_peak_memory("Max memory allocated after creating DDP", args.local_rank)
# ******************************
# create dataset and dataloader
# ******************************
if not args.v4:
test_image_transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.RandomResizedCrop(
args.image_size*8,
scale=(1.0, 1.0), ratio=(1., 1.),
interpolation=T.InterpolationMode.BILINEAR),
T.ToTensor(),
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
test_pose_transform = T.Compose([
T.RandomResizedCrop(
args.image_size*8,
scale=(1.0, 1.0), ratio=(1., 1.),
interpolation=T.InterpolationMode.BILINEAR),
])
else:
test_image_transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.RandomResizedCrop(
args.image_size*8,
scale=(1.0, 1.0), ratio=(1., 1.),
interpolation=T.InterpolationMode.BILINEAR),
T.ToTensor(),
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
test_pose_transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.RandomResizedCrop(
args.image_size*8,
scale=(1.0, 1.0), ratio=(1., 1.),
interpolation=T.InterpolationMode.BILINEAR),
T.ToTensor(),
])
test_image_dataset = None
test_image_dataloader = None
test_image_dataloader_iter = None
dist.barrier()
infer_model = model.module if hasattr(model, "module") else model
print(f"[rank{args.rank}] start training loop!")
print("train steps:",args.num_train_steps)
for itr in range(0, args.num_train_steps):
# Get input
test_batch_data = None
os.makedirs(os.path.join(args.local_image_dir,str(itr)),exist_ok=True)
test_batch_data_2 = None
with torch.no_grad():
print("args:",args)
nSample = min(args.train_batch_size, args.val_batch_size)
visualize(args, "val_images", test_batch_data, tb_writer, infer_model, itr, nSample=nSample, nTest=1, pose_transfer=args.pose_transfer, batch_data_2=test_batch_data_2)
if __name__ == "__main__":
str2bool = lambda arg: bool(int(arg))
parser = argparse.ArgumentParser(description='Control Net training')
## Model
parser.add_argument('--model_config', type=str, default="model_lib/ControlNet/models/cldm_v15_video.yaml",
help="The path of model config file")
parser.add_argument('--reinit_hint_block', action='store_true', default=False,
help="Re-initialize hint blocks for channel mis-match")
parser.add_argument('--image_size', type =int, default=64)
parser.add_argument('--empty_text_prob', type=float, default=0.1,
help="For cfg, probablity of replacing text to empty seq ")
parser.add_argument('--sd_locked', type =str2bool, default=True,
help='Freeze parameters in original stable-diffusion decoder')
parser.add_argument('--only_mid_control', type =str2bool, default=False,
help='Only control middle blocks')
parser.add_argument('--finetune_all', action='store_true', default=False,
help='Fine-tune all UNet and ControlNet parameters')
parser.add_argument('--finetune_imagecond_unet', action='store_true', default=False,
help='Fine-tune all UNet and image ControlNet parameters')
parser.add_argument('--control_type', type=str, nargs="+", default=["pose"],
help='The type of conditioning')
parser.add_argument('--control_dropout', type=float, default=0.0,
help='The probability of dropping out control inputs, only applied for multi-control')
parser.add_argument('--depth_bg_threshold', type=float, default=0.0,
help='The threshold of cutting off depth')
parser.add_argument('--inpaint_unet', type=str2bool, default=False,
help='Train ControlNet for inpainting UNet')
parser.add_argument('--blank_mask_prob', type=float, default=0.0,
help='Train ControlNet for inpainting UNet with blank mask')
parser.add_argument('--mask_densepose', type=float, default=0.0,
help='Train ControlNet for with masked densepose (if used)')
parser.add_argument("--control_mode", type=str, default="balance",
help="Set controlnet is more important or balance.")
parser.add_argument('--wonoise', action='store_true', default=False,
help='Use with referenceonly, remove adding noise on reference image')
parser.add_argument('--mask_bg', action='store_true', default=False,
help='Mask the background of image to pure black')
## Training
parser.add_argument("--img_bin_limit", default = 29,
help="The upper limit while loading image from a sequence.")
parser.add_argument('--num_workers', type = int, default = 1,
help='total number of workers for dataloaders')
parser.add_argument('--train_batch_size', type = int, default = 16,
help='batch size for each gpu in distributed training')
parser.add_argument('--val_batch_size', type = int, default = 1,
help='batch size for each gpu during inference(must be set to 1)')
parser.add_argument('--lr', type = float, default = 1e-5,
help='learning rate of new params in control net')
parser.add_argument('--lr_sd', type = float, default = 1e-5,
help='learning rate of params from original stable diffusion modules')
parser.add_argument('--weight_decay', type = float, default = 0,
help='weight decay (L2) regularization')
parser.add_argument('--lr_anneal_steps', type = float, default = 0,
help='steps for learning rate annealing')
parser.add_argument('--ema_rate', type = float, default = 0,
help='rate for ema')
parser.add_argument('--num_train_steps', type = int, default = 1000000,
help='number of train steps')
parser.add_argument('--grad_clip_norm', type = float, default = 0.5,
help='grad_clip_norm')
parser.add_argument("--gradient_accumulation_steps", type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--seed', type=int, default=42,
help='random seed for initialization')
parser.add_argument("--logging_steps", type=int, default=100, help="Log every X updates steps.")
parser.add_argument("--logging_gen_steps", type=int, default=1000, help="Log Generated Image every X updates steps.")
parser.add_argument("--save_steps", type=int, default=10000, help=" 10000 Save checkpoint every X updates steps.")
parser.add_argument("--save_total_limit", type=int, default=100,
help="Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default")
parser.add_argument('--use_fp16', action='store_true', default=False,
help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit')
parser.add_argument('--global_step', type=int, default=0,
help='initial global step to start with (use with --init_path)')
parser.add_argument('--load_optimizer_state', type=str2bool, default=True,
help='Whether to restore optimizer when resuming')
parser.add_argument('--compile', type=str2bool, default=False,
help='compile model (for torch 2)')
parser.add_argument('--with_text', action='store_false', default=True,
help='Feed text_blip into the model')
parser.add_argument('--pose_transfer', action='store_true', default=False,
help='Mode: pose_transfer, default: Self reconstruction')
parser.add_argument('--eta', type = float, default = 0.0,
help='eta during DDIM Sampling')
parser.add_argument('--autoreg', action='store_true', default=False,
help='Auto Regressively generate result')
parser.add_argument('--gif_time', type = float, default = 0.03,
help='gif per frame time')
parser.add_argument('--text_prompt', type=str, default=None,
help='Feed text_prompt into the model')
## Data
parser.add_argument('--v4', action='store_true', default=False,
help='dataset with original pose and image')
parser.add_argument("--train_dataset", type=str, default="laionhumanDs_densepose_1face_lm",
help="The dataset class for training.")
parser.add_argument("--output_dir", type=str, default=None, required=False,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--local_log_dir", type=str, default=None, required=False,
help="The local output directory where tensorboard will be written.")
parser.add_argument("--local_image_dir", type=str, default=None, required=True,
help="The local output directory where generated images will be written.")
parser.add_argument("--resume_dir", type=str, default=None,
help="The resume directory where the model checkpoints will be loaded.")
parser.add_argument("--image_pretrain_dir", type=str, default=None,
help="The resume directory where the model checkpoints will be loaded.")
parser.add_argument("--pose_pretrain_dir", type=str, default=None,
help="The resume directory where the model checkpoints will be loaded.")
parser.add_argument("--init_path", type=str, default="/home/dchang/MagicDance/jefu/code/model_lib/ControlNet/pretrained_weights/control_sd15_ini.ckpt",
help="The resume directory where the model checkpoints will be loaded.")
parser.add_argument('--local_cond_image_path', type=str, default=None, help='Cond image')
parser.add_argument('--local_pose_path', type=str, default=None, help='Pose maps')
args = parser.parse_args()
print("Customize text prompt:",args.text_prompt)
main(args)