-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgeneratorGAN.py
46 lines (34 loc) · 1.39 KB
/
generatorGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from schematic import SchematicFile
import tensorflow as tf
import numpy as np
import os
from tensorflow.keras import layers
import modelGAN
## Using a pre-trained model, export a set of sample output data.
tf.executing_eagerly()
BUFFER_SIZE = 90000
BATCH_SIZE = 256
BASE = 2
B2 = BASE * 2
B3 = BASE * 4
noise_dim = 100
generator = modelGAN.make_generator_model(BASE)
discriminator = modelGAN.make_discriminator_model(BASE)
# This method returns a helper function to compute cross entropy loss
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
checkpoint_dir = './training_checkpoints_%dx' % B3
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,
discriminator_optimizer=discriminator_optimizer,
generator=generator,
discriminator=discriminator)
# Load our pre-trained model
checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir)).expect_partial()
def makeStructures(structureCount):
output = generator(tf.random.normal([structureCount, noise_dim]), training=False)
output = output * .5 + .5
output = output.numpy()
output.shape = [structureCount, B3, B3, B3]
return output