forked from Project-MONAI/tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunet_training_smartcache.py
209 lines (182 loc) · 8.83 KB
/
unet_training_smartcache.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This example shows how to execute distributed training based on PyTorch native module and SmartCacheDataset.
It can run on several nodes with multiple GPU devices on every node.
It splits data into partitions, every rank only cache and train with its own partition.
Main steps to set up the distributed training:
- Execute `torch.distributed.launch` to create processes on every node for every GPU.
It receives parameters as below:
`--nproc_per_node=NUM_GPUS_PER_NODE`
`--nnodes=NUM_NODES`
`--node_rank=INDEX_CURRENT_NODE`
`--master_addr="192.168.1.1"`
`--master_port=1234`
For more details, refer to https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py.
Alternatively, we can also use `torch.multiprocessing.spawn` to start program, but it that case, need to handle
all the above parameters and compute `rank` manually, then set to `init_process_group`, etc.
`torch.distributed.launch` is even more efficient than `torch.multiprocessing.spawn` during training.
- Use `init_process_group` to initialize every process, every GPU runs in a separate process with unique rank.
Here we use `NVIDIA NCCL` as the backend and must set `init_method="env://"` if use `torch.distributed.launch`.
- Wrap the model with `DistributedDataParallel` after moving to expected device.
- Execute `partition_dataset` to load data only for current rank, no need `DistributedSampler` anymore.
- `SmartCacheDataset` computes and caches the data for the first epoch.
- Call `start()` function of `SmartCacheDataset` to start the replacement thread.
- Call `update_cache()` function of `SmartCacheDataset` before every epoch to replace part of cache content.
- Call `shutdown()` function of `SmartCacheDataset` to stop replacement thread when training ends.
Note:
`torch.distributed.launch` will launch `nnodes * nproc_per_node = world_size` processes in total.
Suggest setting exactly the same software environment for every node, especially `PyTorch`, `nccl`, etc.
A good practice is to use the same MONAI docker image for all nodes directly.
Example script to execute this program on every node:
python -m torch.distributed.launch --nproc_per_node=NUM_GPUS_PER_NODE
--nnodes=NUM_NODES --node_rank=INDEX_CURRENT_NODE
--master_addr="192.168.1.1" --master_port=1234
unet_training_smartcache.py -d DIR_OF_TESTDATA
This example was tested with [Ubuntu 16.04/20.04], [NCCL 2.6.3].
Referring to: https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
"""
import argparse
import math
import os
import sys
from glob import glob
import nibabel as nib
import numpy as np
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel
import monai
from monai.data import DataLoader, SmartCacheDataset, create_test_image_3d, partition_dataset
from monai.transforms import (
AsChannelFirstd,
Compose,
LoadImaged,
RandCropByPosNegLabeld,
RandRotate90d,
ScaleIntensityd,
)
def train(args):
# disable logging for processes except 0 on every node
if args.local_rank != 0:
f = open(os.devnull, "w")
sys.stdout = sys.stderr = f
elif not os.path.exists(args.dir):
# create 40 random image, mask paris for training
print(f"generating synthetic data to {args.dir} (this may take a while)")
os.makedirs(args.dir)
# set random seed to generate same random data for every node
np.random.seed(seed=0)
for i in range(40):
im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1)
n = nib.Nifti1Image(im, np.eye(4))
nib.save(n, os.path.join(args.dir, f"img{i:d}.nii.gz"))
n = nib.Nifti1Image(seg, np.eye(4))
nib.save(n, os.path.join(args.dir, f"seg{i:d}.nii.gz"))
# initialize the distributed training process, every GPU runs in a process
dist.init_process_group(backend="nccl", init_method="env://")
images = sorted(glob(os.path.join(args.dir, "img*.nii.gz")))
segs = sorted(glob(os.path.join(args.dir, "seg*.nii.gz")))
train_files = [{"img": img, "seg": seg} for img, seg in zip(images, segs)]
# define transforms for image and segmentation
train_transforms = Compose(
[
LoadImaged(keys=["img", "seg"]),
AsChannelFirstd(keys=["img", "seg"], channel_dim=-1),
ScaleIntensityd(keys="img"),
RandCropByPosNegLabeld(
keys=["img", "seg"], label_key="seg", spatial_size=[96, 96, 96], pos=1, neg=1, num_samples=4
),
RandRotate90d(keys=["img", "seg"], prob=0.5, spatial_axes=[0, 2]),
]
)
# partition dataset based on current rank number, every rank trains with its own data
# it can avoid duplicated caching content in each rank, but will not do global shuffle before every epoch
data_part = partition_dataset(
data=train_files,
num_partitions=dist.get_world_size(),
shuffle=True,
even_divisible=True,
)[dist.get_rank()]
train_ds = SmartCacheDataset(
data=data_part,
transform=train_transforms,
replace_rate=0.2,
cache_num=15, # we suppose to use 2 ranks in this example, every rank has 20 training images
num_init_workers=2,
num_replace_workers=2,
)
# use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training
train_loader = DataLoader(train_ds, batch_size=2, shuffle=True, num_workers=2, pin_memory=True)
# create UNet, DiceLoss and Adam optimizer
device = torch.device(f"cuda:{args.local_rank}")
torch.cuda.set_device(device)
model = monai.networks.nets.UNet(
spatial_dims=3,
in_channels=1,
out_channels=1,
channels=(16, 32, 64, 128, 256),
strides=(2, 2, 2, 2),
num_res_units=2,
).to(device)
loss_function = monai.losses.DiceLoss(sigmoid=True).to(device)
optimizer = torch.optim.Adam(model.parameters(), 1e-3)
# wrap the model with DistributedDataParallel module
model = DistributedDataParallel(model, device_ids=[device])
# start a typical PyTorch training
epoch_loss_values = list()
# start the replacement thread of SmartCache
train_ds.start()
for epoch in range(5):
print("-" * 10)
print(f"epoch {epoch + 1}/{5}")
model.train()
epoch_loss = 0
step = 0
for batch_data in train_loader:
step += 1
inputs, labels = batch_data["img"].to(device), batch_data["seg"].to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = loss_function(outputs, labels)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_len = math.ceil(len(train_ds) / train_loader.batch_size)
print(f"{step}/{epoch_len}, train_loss: {loss.item():.4f}")
epoch_loss /= step
epoch_loss_values.append(epoch_loss)
# replace 20% of cache content for next epoch
train_ds.update_cache()
print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}")
# stop replacement thread of SmartCache
train_ds.shutdown()
print(f"train completed, epoch losses: {epoch_loss_values}")
if dist.get_rank() == 0:
# all processes should see same parameters as they all start from same
# random parameters and gradients are synchronized in backward passes,
# therefore, saving it in one process is sufficient
torch.save(model.state_dict(), "final_model.pth")
dist.destroy_process_group()
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-d", "--dir", default="./testdata", type=str, help="directory to create random data")
# must parse the command-line argument: ``--local_rank=LOCAL_PROCESS_RANK``, which will be provided by DDP
parser.add_argument("--local_rank", type=int)
args = parser.parse_args()
train(args=args)
# usage example(refer to https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py):
# python -m torch.distributed.launch --nproc_per_node=NUM_GPUS_PER_NODE
# --nnodes=NUM_NODES --node_rank=INDEX_CURRENT_NODE
# --master_addr="192.168.1.1" --master_port=1234
# unet_training_smartcache.py -d DIR_OF_TESTDATA
if __name__ == "__main__":
main()