forked from Project-MONAI/tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunet_training_dict.py
234 lines (205 loc) · 8.76 KB
/
unet_training_dict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import sys
import tempfile
from glob import glob
import nibabel as nib
import numpy as np
import torch
from ignite.engine import (
Events,
_prepare_batch,
create_supervised_evaluator,
create_supervised_trainer,
)
from ignite.handlers import EarlyStopping, ModelCheckpoint
from torch.utils.data import DataLoader
import monai
from monai.data import create_test_image_3d, list_data_collate, decollate_batch
from monai.handlers import (
MeanDice,
StatsHandler,
TensorBoardImageHandler,
TensorBoardStatsHandler,
stopping_fn_from_metric,
)
from monai.transforms import (
Activations,
EnsureChannelFirstd,
AsDiscrete,
Compose,
LoadImaged,
RandCropByPosNegLabeld,
RandRotate90d,
ScaleIntensityd,
)
def main(tempdir):
monai.config.print_config()
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
# create a temporary directory and 40 random image, mask pairs
print(f"generating synthetic data to {tempdir} (this may take a while)")
for i in range(40):
im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1)
n = nib.Nifti1Image(im, np.eye(4))
nib.save(n, os.path.join(tempdir, f"img{i:d}.nii.gz"))
n = nib.Nifti1Image(seg, np.eye(4))
nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))
images = sorted(glob(os.path.join(tempdir, "img*.nii.gz")))
segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))
train_files = [{"img": img, "seg": seg} for img, seg in zip(images[:20], segs[:20])]
val_files = [{"img": img, "seg": seg} for img, seg in zip(images[-20:], segs[-20:])]
# define transforms for image and segmentation
train_transforms = Compose(
[
LoadImaged(keys=["img", "seg"]),
EnsureChannelFirstd(keys=["img", "seg"]),
ScaleIntensityd(keys="img"),
RandCropByPosNegLabeld(
keys=["img", "seg"],
label_key="seg",
spatial_size=[96, 96, 96],
pos=1,
neg=1,
num_samples=4,
),
RandRotate90d(keys=["img", "seg"], prob=0.5, spatial_axes=[0, 2]),
]
)
val_transforms = Compose(
[
LoadImaged(keys=["img", "seg"]),
EnsureChannelFirstd(keys=["img", "seg"]),
ScaleIntensityd(keys="img"),
]
)
# define dataset, data loader
check_ds = monai.data.Dataset(data=train_files, transform=train_transforms)
# use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training
check_loader = DataLoader(
check_ds,
batch_size=2,
num_workers=4,
collate_fn=list_data_collate,
pin_memory=torch.cuda.is_available(),
)
check_data = monai.utils.misc.first(check_loader)
print(check_data["img"].shape, check_data["seg"].shape)
# create a training data loader
train_ds = monai.data.Dataset(data=train_files, transform=train_transforms)
# use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training
train_loader = DataLoader(
train_ds,
batch_size=2,
shuffle=True,
num_workers=4,
collate_fn=list_data_collate,
pin_memory=torch.cuda.is_available(),
)
# create a validation data loader
val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
val_loader = DataLoader(
val_ds,
batch_size=5,
num_workers=8,
collate_fn=list_data_collate,
pin_memory=torch.cuda.is_available(),
)
# create UNet, DiceLoss and Adam optimizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = monai.networks.nets.UNet(
spatial_dims=3,
in_channels=1,
out_channels=1,
channels=(16, 32, 64, 128, 256),
strides=(2, 2, 2, 2),
num_res_units=2,
).to(device)
loss = monai.losses.DiceLoss(sigmoid=True)
lr = 1e-3
opt = torch.optim.Adam(net.parameters(), lr)
# Ignite trainer expects batch=(img, seg) and returns output=loss at every iteration,
# user can add output_transform to return other values, like: y_pred, y, etc.
def prepare_batch(batch, device=None, non_blocking=False):
return _prepare_batch((batch["img"], batch["seg"]), device, non_blocking)
trainer = create_supervised_trainer(net, opt, loss, device, False, prepare_batch=prepare_batch)
# adding checkpoint handler to save models (network params and optimizer stats) during training
checkpoint_handler = ModelCheckpoint("./runs_dict/", "net", n_saved=10, require_empty=False)
trainer.add_event_handler(
event_name=Events.EPOCH_COMPLETED,
handler=checkpoint_handler,
to_save={"net": net, "opt": opt},
)
# StatsHandler prints loss at every iteration and print metrics at every epoch,
# we don't set metrics for trainer here, so just print loss, user can also customize print functions
# and can use output_transform to convert engine.state.output if it's not loss value
train_stats_handler = StatsHandler(name="trainer", output_transform=lambda x: x)
train_stats_handler.attach(trainer)
# TensorBoardStatsHandler plots loss at every iteration and plots metrics at every epoch, same as StatsHandler
train_tensorboard_stats_handler = TensorBoardStatsHandler(output_transform=lambda x: x)
train_tensorboard_stats_handler.attach(trainer)
validation_every_n_iters = 5
# set parameters for validation
metric_name = "Mean_Dice"
# add evaluation metric to the evaluator engine
val_metrics = {metric_name: MeanDice()}
post_pred = Compose([Activations(sigmoid=True), AsDiscrete(threshold=0.5)])
post_label = Compose([AsDiscrete(threshold=0.5)])
# Ignite evaluator expects batch=(img, seg) and returns output=(y_pred, y) at every iteration,
# user can add output_transform to return other values
evaluator = create_supervised_evaluator(
net,
val_metrics,
device,
True,
output_transform=lambda x, y, y_pred: (
[post_pred(i) for i in decollate_batch(y_pred)],
[post_label(i) for i in decollate_batch(y)],
),
prepare_batch=prepare_batch,
)
@trainer.on(Events.ITERATION_COMPLETED(every=validation_every_n_iters))
def run_validation(engine):
evaluator.run(val_loader)
# add early stopping handler to evaluator
early_stopper = EarlyStopping(patience=4, score_function=stopping_fn_from_metric(metric_name), trainer=trainer)
evaluator.add_event_handler(event_name=Events.EPOCH_COMPLETED, handler=early_stopper)
# add stats event handler to print validation stats via evaluator
val_stats_handler = StatsHandler(
name="evaluator",
output_transform=lambda x: None, # no need to print loss value, so disable per iteration output
global_epoch_transform=lambda x: trainer.state.epoch,
) # fetch global epoch number from trainer
val_stats_handler.attach(evaluator)
# add handler to record metrics to TensorBoard at every validation epoch
val_tensorboard_stats_handler = TensorBoardStatsHandler(
output_transform=lambda x: None, # no need to plot loss value, so disable per iteration output
global_epoch_transform=lambda x: trainer.state.iteration,
) # fetch global iteration number from trainer
val_tensorboard_stats_handler.attach(evaluator)
# add handler to draw the first image and the corresponding label and model output in the last batch
# here we draw the 3D output as GIF format along the depth axis, every 2 validation iterations.
val_tensorboard_image_handler = TensorBoardImageHandler(
batch_transform=lambda batch: (batch["img"], batch["seg"]),
output_transform=lambda output: output[0],
global_iter_transform=lambda x: trainer.state.epoch,
)
evaluator.add_event_handler(
event_name=Events.ITERATION_COMPLETED(every=2),
handler=val_tensorboard_image_handler,
)
train_epochs = 5
state = trainer.run(train_loader, train_epochs)
print(state)
if __name__ == "__main__":
with tempfile.TemporaryDirectory() as tempdir:
main(tempdir)