-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathseecoder.py
570 lines (480 loc) · 19.3 KB
/
seecoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
import torch
import torch.nn as nn
import torch.nn.functional as F
import copy
from .seecoder_utils import with_pos_embed
###########
# helpers #
###########
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
def _get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == "relu":
return F.relu
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
def c2_xavier_fill(module):
# Caffe2 implementation of XavierFill in fact
nn.init.kaiming_uniform_(module.weight, a=1)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
def with_pos_embed(x, pos):
return x if pos is None else x + pos
###########
# Modules #
###########
class Conv2d_Convenience(nn.Conv2d):
def __init__(self, *args, **kwargs):
norm = kwargs.pop("norm", None)
activation = kwargs.pop("activation", None)
super().__init__(*args, **kwargs)
self.norm = norm
self.activation = activation
def forward(self, x):
x = F.conv2d(
x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
if self.norm is not None:
x = self.norm(x)
if self.activation is not None:
x = self.activation(x)
return x
class DecoderLayer(nn.Module):
def __init__(self,
dim=256,
feedforward_dim=1024,
dropout=0.1,
activation="relu",
n_heads=8,):
super().__init__()
self.self_attn = nn.MultiheadAttention(dim, n_heads, dropout=dropout)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(dim)
self.linear1 = nn.Linear(dim, feedforward_dim)
self.activation = _get_activation_fn(activation)
self.dropout2 = nn.Dropout(dropout)
self.linear2 = nn.Linear(feedforward_dim, dim)
self.dropout3 = nn.Dropout(dropout)
self.norm2 = nn.LayerNorm(dim)
def forward(self, x):
h = x
h1 = self.self_attn(x, x, x, attn_mask=None)[0]
h = h + self.dropout1(h1)
h = self.norm1(h)
h2 = self.linear2(self.dropout2(self.activation(self.linear1(h))))
h = h + self.dropout3(h2)
h = self.norm2(h)
return h
class DecoderLayerStacked(nn.Module):
def __init__(self, layer, num_layers, norm=None):
super().__init__()
self.layers = _get_clones(layer, num_layers)
self.num_layers = num_layers
self.norm = norm
def forward(self, x):
h = x
for _, layer in enumerate(self.layers):
h = layer(h)
if self.norm is not None:
h = self.norm(h)
return h
class SelfAttentionLayer(nn.Module):
def __init__(self, channels, nhead, dropout=0.0,
activation="relu", normalize_before=False):
super().__init__()
self.self_attn = nn.MultiheadAttention(channels, nhead, dropout=dropout)
self.norm = nn.LayerNorm(channels)
self.dropout = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
self._reset_parameters()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward_post(self,
qkv,
qk_pos = None,
mask = None,):
h = qkv
qk = with_pos_embed(qkv, qk_pos).transpose(0, 1)
v = qkv.transpose(0, 1)
h1 = self.self_attn(qk, qk, v, attn_mask=mask)[0]
h1 = h1.transpose(0, 1)
h = h + self.dropout(h1)
h = self.norm(h)
return h
def forward_pre(self, tgt,
tgt_mask = None,
tgt_key_padding_mask = None,
query_pos = None):
# deprecated
assert False
tgt2 = self.norm(tgt)
q = k = self.with_pos_embed(tgt2, query_pos)
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask)[0]
tgt = tgt + self.dropout(tgt2)
return tgt
def forward(self, *args, **kwargs):
if self.normalize_before:
return self.forward_pre(*args, **kwargs)
return self.forward_post(*args, **kwargs)
class CrossAttentionLayer(nn.Module):
def __init__(self, channels, nhead, dropout=0.0,
activation="relu", normalize_before=False):
super().__init__()
self.multihead_attn = nn.MultiheadAttention(channels, nhead, dropout=dropout)
self.norm = nn.LayerNorm(channels)
self.dropout = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
self._reset_parameters()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward_post(self,
q,
kv,
q_pos = None,
k_pos = None,
mask = None,):
h = q
q = with_pos_embed(q, q_pos).transpose(0, 1)
k = with_pos_embed(kv, k_pos).transpose(0, 1)
v = kv.transpose(0, 1)
h1 = self.multihead_attn(q, k, v, attn_mask=mask)[0]
h1 = h1.transpose(0, 1)
h = h + self.dropout(h1)
h = self.norm(h)
return h
def forward_pre(self, tgt, memory,
memory_mask = None,
memory_key_padding_mask = None,
pos = None,
query_pos = None):
# Deprecated
assert False
tgt2 = self.norm(tgt)
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory, attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask)[0]
tgt = tgt + self.dropout(tgt2)
return tgt
def forward(self, *args, **kwargs):
if self.normalize_before:
return self.forward_pre(*args, **kwargs)
return self.forward_post(*args, **kwargs)
class FeedForwardLayer(nn.Module):
def __init__(self, channels, hidden_channels=2048, dropout=0.0,
activation="relu", normalize_before=False):
super().__init__()
self.linear1 = nn.Linear(channels, hidden_channels)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(hidden_channels, channels)
self.norm = nn.LayerNorm(channels)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
self._reset_parameters()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward_post(self, x):
h = x
h1 = self.linear2(self.dropout(self.activation(self.linear1(h))))
h = h + self.dropout(h1)
h = self.norm(h)
return h
def forward_pre(self, x):
xn = self.norm(x)
h = x
h1 = self.linear2(self.dropout(self.activation(self.linear1(xn))))
h = h + self.dropout(h1)
return h
def forward(self, *args, **kwargs):
if self.normalize_before:
return self.forward_pre(*args, **kwargs)
return self.forward_post(*args, **kwargs)
class MLP(nn.Module):
def __init__(self, in_channels, channels, out_channels, num_layers):
super().__init__()
self.num_layers = num_layers
h = [channels] * (num_layers - 1)
self.layers = nn.ModuleList(
nn.Linear(n, k)
for n, k in zip([in_channels]+h, h+[out_channels]))
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
class PPE_MLP(nn.Module):
def __init__(self, freq_num=20, freq_max=None, out_channel=768, mlp_layer=3):
import math
super().__init__()
self.freq_num = freq_num
self.freq_max = freq_max
self.out_channel = out_channel
self.mlp_layer = mlp_layer
self.twopi = 2 * math.pi
mlp = []
in_channel = freq_num*4
for idx in range(mlp_layer):
linear = nn.Linear(in_channel, out_channel, bias=True)
nn.init.xavier_normal_(linear.weight)
nn.init.constant_(linear.bias, 0)
mlp.append(linear)
if idx != mlp_layer-1:
mlp.append(nn.SiLU())
in_channel = out_channel
self.mlp = nn.Sequential(*mlp)
nn.init.constant_(self.mlp[-1].weight, 0)
def forward(self, x, mask=None):
assert mask is None, "Mask not implemented"
h, w = x.shape[-2:]
minlen = min(h, w)
h_embed, w_embed = torch.meshgrid(torch.arange(h), torch.arange(w), indexing='ij')
if self.training:
import numpy.random as npr
pertube_h, pertube_w = npr.uniform(-0.5, 0.5), npr.uniform(-0.5, 0.5)
else:
pertube_h, pertube_w = 0, 0
h_embed = (h_embed+0.5 - h/2 + pertube_h) / (minlen) * self.twopi
w_embed = (w_embed+0.5 - w/2 + pertube_w) / (minlen) * self.twopi
h_embed, w_embed = h_embed.to(x.device).to(x.dtype), w_embed.to(x.device).to(x.dtype)
dim_t = torch.linspace(0, 1, self.freq_num, dtype=torch.float32, device=x.device)
freq_max = self.freq_max if self.freq_max is not None else minlen/2
dim_t = freq_max ** dim_t.to(x.dtype)
pos_h = h_embed[:, :, None] * dim_t
pos_w = w_embed[:, :, None] * dim_t
pos = torch.cat((pos_h.sin(), pos_h.cos(), pos_w.sin(), pos_w.cos()), dim=-1)
pos = self.mlp(pos)
pos = pos.permute(2, 0, 1)[None]
return pos
def __repr__(self, _repr_indent=4):
head = "Positional encoding " + self.__class__.__name__
body = [
"num_pos_feats: {}".format(self.num_pos_feats),
"temperature: {}".format(self.temperature),
"normalize: {}".format(self.normalize),
"scale: {}".format(self.scale),
]
# _repr_indent = 4
lines = [head] + [" " * _repr_indent + line for line in body]
return "\n".join(lines)
###########
# Decoder #
###########
class Decoder(nn.Module):
def __init__(
self,
inchannels,
trans_input_tags,
trans_num_layers,
trans_dim,
trans_nheads,
trans_dropout,
trans_feedforward_dim,):
super().__init__()
trans_inchannels = {
k: v for k, v in inchannels.items() if k in trans_input_tags}
fpn_inchannels = {
k: v for k, v in inchannels.items() if k not in trans_input_tags}
self.trans_tags = sorted(list(trans_inchannels.keys()))
self.fpn_tags = sorted(list(fpn_inchannels.keys()))
self.all_tags = sorted(list(inchannels.keys()))
if len(self.trans_tags)==0:
assert False # Not allowed
self.num_trans_lvls = len(self.trans_tags)
self.inproj_layers = nn.ModuleDict()
for tagi in self.trans_tags:
layeri = nn.Sequential(
nn.Conv2d(trans_inchannels[tagi], trans_dim, kernel_size=1),
nn.GroupNorm(32, trans_dim),)
nn.init.xavier_uniform_(layeri[0].weight, gain=1)
nn.init.constant_(layeri[0].bias, 0)
self.inproj_layers[tagi] = layeri
tlayer = DecoderLayer(
dim = trans_dim,
n_heads = trans_nheads,
dropout = trans_dropout,
feedforward_dim = trans_feedforward_dim,
activation = 'relu',)
self.transformer = DecoderLayerStacked(tlayer, trans_num_layers)
for p in self.transformer.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
self.level_embed = nn.Parameter(torch.Tensor(len(self.trans_tags), trans_dim))
nn.init.normal_(self.level_embed)
self.lateral_layers = nn.ModuleDict()
self.output_layers = nn.ModuleDict()
for tagi in self.all_tags:
lateral_conv = Conv2d_Convenience(
inchannels[tagi], trans_dim, kernel_size=1,
bias=False, norm=nn.GroupNorm(32, trans_dim))
c2_xavier_fill(lateral_conv)
self.lateral_layers[tagi] = lateral_conv
for tagi in self.fpn_tags:
output_conv = Conv2d_Convenience(
trans_dim, trans_dim, kernel_size=3, stride=1, padding=1,
bias=False, norm=nn.GroupNorm(32, trans_dim), activation=F.relu,)
c2_xavier_fill(output_conv)
self.output_layers[tagi] = output_conv
def forward(self, features):
x = []
spatial_shapes = {}
for idx, tagi in enumerate(self.trans_tags[::-1]):
xi = features[tagi]
xi = self.inproj_layers[tagi](xi)
bs, _, h, w = xi.shape
spatial_shapes[tagi] = (h, w)
xi = xi.flatten(2).transpose(1, 2) + self.level_embed[idx].view(1, 1, -1)
x.append(xi)
x_length = [xi.shape[1] for xi in x]
x_concat = torch.cat(x, 1)
y_concat = self.transformer(x_concat)
y = torch.split(y_concat, x_length, dim=1)
out = {}
for idx, tagi in enumerate(self.trans_tags[::-1]):
h, w = spatial_shapes[tagi]
yi = y[idx].transpose(1, 2).view(bs, -1, h, w)
out[tagi] = yi
for idx, tagi in enumerate(self.all_tags[::-1]):
lconv = self.lateral_layers[tagi]
if tagi in self.trans_tags:
out[tagi] = out[tagi] + lconv(features[tagi])
tag_save = tagi
else:
oconv = self.output_layers[tagi]
h = lconv(features[tagi])
oprev = out[tag_save]
h = h + F.interpolate(oconv(oprev), size=h.shape[-2:], mode="bilinear", align_corners=False)
out[tagi] = h
return out
#####################
# Query Transformer #
#####################
class QueryTransformer(nn.Module):
def __init__(self,
in_channels,
hidden_dim,
num_queries = [8, 144],
nheads = 8,
num_layers = 9,
feedforward_dim = 2048,
mask_dim = 256,
pre_norm = False,
num_feature_levels = 3,
enforce_input_project = False,
with_fea2d_pos = True):
super().__init__()
if with_fea2d_pos:
self.pe_layer = PPE_MLP(freq_num=20, freq_max=None, out_channel=hidden_dim, mlp_layer=3)
else:
self.pe_layer = None
if in_channels!=hidden_dim or enforce_input_project:
self.input_proj = nn.ModuleList()
for _ in range(num_feature_levels):
self.input_proj.append(nn.Conv2d(in_channels, hidden_dim, kernel_size=1))
c2_xavier_fill(self.input_proj[-1])
else:
self.input_proj = None
self.num_heads = nheads
self.num_layers = num_layers
self.transformer_selfatt_layers = nn.ModuleList()
self.transformer_crossatt_layers = nn.ModuleList()
self.transformer_feedforward_layers = nn.ModuleList()
for _ in range(self.num_layers):
self.transformer_selfatt_layers.append(
SelfAttentionLayer(
channels=hidden_dim,
nhead=nheads,
dropout=0.0,
normalize_before=pre_norm, ))
self.transformer_crossatt_layers.append(
CrossAttentionLayer(
channels=hidden_dim,
nhead=nheads,
dropout=0.0,
normalize_before=pre_norm, ))
self.transformer_feedforward_layers.append(
FeedForwardLayer(
channels=hidden_dim,
hidden_channels=feedforward_dim,
dropout=0.0,
normalize_before=pre_norm, ))
self.num_queries = num_queries
num_gq, num_lq = self.num_queries
self.init_query = nn.Embedding(num_gq+num_lq, hidden_dim)
self.query_pos_embedding = nn.Embedding(num_gq+num_lq, hidden_dim)
self.num_feature_levels = num_feature_levels
self.level_embed = nn.Embedding(num_feature_levels, hidden_dim)
def forward(self, x):
# x is a list of multi-scale feature
assert len(x) == self.num_feature_levels
fea2d = []
fea2d_pos = []
size_list = []
for i in range(self.num_feature_levels):
size_list.append(x[i].shape[-2:])
if self.pe_layer is not None:
pi = self.pe_layer(x[i], None).flatten(2)
pi = pi.transpose(1, 2)
else:
pi = None
xi = self.input_proj[i](x[i]) if self.input_proj is not None else x[i]
xi = xi.flatten(2) + self.level_embed.weight[i][None, :, None]
xi = xi.transpose(1, 2)
fea2d.append(xi)
fea2d_pos.append(pi)
bs, _, _ = fea2d[0].shape
num_gq, num_lq = self.num_queries
gquery = self.init_query.weight[:num_gq].unsqueeze(0).repeat(bs, 1, 1)
lquery = self.init_query.weight[num_gq:].unsqueeze(0).repeat(bs, 1, 1)
gquery_pos = self.query_pos_embedding.weight[:num_gq].unsqueeze(0).repeat(bs, 1, 1)
lquery_pos = self.query_pos_embedding.weight[num_gq:].unsqueeze(0).repeat(bs, 1, 1)
for i in range(self.num_layers):
level_index = i % self.num_feature_levels
qout = self.transformer_crossatt_layers[i](
q = lquery,
kv = fea2d[level_index],
q_pos = lquery_pos,
k_pos = fea2d_pos[level_index],
mask = None,)
lquery = qout
qout = self.transformer_selfatt_layers[i](
qkv = torch.cat([gquery, lquery], dim=1),
qk_pos = torch.cat([gquery_pos, lquery_pos], dim=1),)
qout = self.transformer_feedforward_layers[i](qout)
gquery = qout[:, :num_gq]
lquery = qout[:, num_gq:]
output = torch.cat([gquery, lquery], dim=1)
return output
##################
# Main structure #
##################
class SemanticExtractionEncoder(nn.Module):
def __init__(self,
imencoder_cfg,
imdecoder_cfg,
qtransformer_cfg):
super().__init__()
self.imencoder = imencoder_cfg
self.imdecoder = imdecoder_cfg
self.qtransformer = qtransformer_cfg
def forward(self, x):
fea = self.imencoder(x)
hs = {'res3' : fea['res3'],
'res4' : fea['res4'],
'res5' : fea['res5'], }
hs = self.imdecoder(hs)
hs = [hs['res3'], hs['res4'], hs['res5']]
q = self.qtransformer(hs)
return q
def encode(self, x):
return self(x)