forked from MeetKai/functionary
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver_vllm.py
436 lines (370 loc) · 15.9 KB
/
server_vllm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
# Adapted from
# https://github.com/vllm-project/vllm/blob/2bdea7ac110d3090d6a3c582aed36577ca480473/vllm/entrypoints/openai/api_server.py
# Copyright 2023 vLLM contributors
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import asyncio
from http import HTTPStatus
import json
import time
from typing import AsyncGenerator, Dict, List, Optional
from pydantic import BaseModel, Field
from typing import Optional, Union, List, Dict, Any, Literal
import fastapi
from fastapi import BackgroundTasks, Request
from fastapi.exceptions import RequestValidationError
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, StreamingResponse
import uvicorn
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.entrypoints.openai.protocol import (
ErrorResponse,
LogProbs, ModelCard, ModelList, ModelPermission, UsageInfo)
from vllm.logger import init_logger
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
from vllm.transformers_utils.tokenizer import get_tokenizer
from vllm.utils import random_uuid
from functionary.inference import prepare_messages_for_inference
from functionary.openai_types import ChatMessage, FunctionCall
TIMEOUT_KEEP_ALIVE = 5 # seconds
logger = init_logger(__name__)
served_model = None
app = fastapi.FastAPI()
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
functions: Optional[List[Dict[str, Any]]]
temperature: Optional[float] = 0.7
top_p: Optional[float] = 1.0
n: Optional[int] = 1
max_tokens: Optional[int] = 256
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
stream: Optional[bool] = False
presence_penalty: Optional[float] = 0.0
frequency_penalty: Optional[float] = 0.0
logit_bias: Optional[Dict[str, float]] = None
user: Optional[str] = None
# Additional parameters supported by vLLM
best_of: Optional[int] = None
top_k: Optional[int] = -1
ignore_eos: Optional[bool] = False
use_beam_search: Optional[bool] = False
class ChatCompletionResponseChoice(BaseModel):
index: int
message: ChatMessage
finish_reason: Optional[Literal["stop", "length", "function_call"]] = None
class ChatCompletionResponse(BaseModel):
id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}")
object: str = "chat.completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseChoice]
usage: UsageInfo
class DeltaMessage(BaseModel):
role: Optional[str] = None
content: Optional[str] = None
class ChatCompletionResponseStreamChoice(BaseModel):
index: int
delta: DeltaMessage
finish_reason: Optional[Literal["stop", "length", "function_call"]] = None
class ChatCompletionStreamResponse(BaseModel):
id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}")
object: str = "chat.completion.chunk"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseStreamChoice]
def create_error_response(status_code: HTTPStatus,
message: str) -> JSONResponse:
return JSONResponse(ErrorResponse(message=message,
type="invalid_request_error").dict(),
status_code=status_code.value)
@app.exception_handler(RequestValidationError)
async def validation_exception_handler(request, exc): # pylint: disable=unused-argument
return create_error_response(HTTPStatus.BAD_REQUEST, str(exc))
async def check_model(request) -> Optional[JSONResponse]:
if request.model == served_model:
return
ret = create_error_response(
HTTPStatus.NOT_FOUND,
f"The model `{request.model}` does not exist.",
)
return ret
async def check_length(request, input_ids, model_config):
if hasattr(model_config.hf_config, "max_sequence_length"):
context_len = model_config.hf_config.max_sequence_length
elif hasattr(model_config.hf_config, "seq_length"):
context_len = model_config.hf_config.seq_length
elif hasattr(model_config.hf_config, "max_position_embeddings"):
context_len = model_config.hf_config.max_position_embeddings
elif hasattr(model_config.hf_config, "seq_length"):
context_len = model_config.hf_config.seq_length
else:
context_len = 4096
token_num = len(input_ids)
if token_num + request.max_tokens > context_len:
return create_error_response(
HTTPStatus.BAD_REQUEST,
f"This model's maximum context length is {context_len} tokens. "
f"However, you requested {request.max_tokens + token_num} tokens "
f"({token_num} in the messages, "
f"{request.max_tokens} in the completion). "
f"Please reduce the length of the messages or completion.",
)
else:
return None
@app.get("/v1/models")
async def show_available_models():
"""Show available models. Right now we only have one model."""
model_cards = [
ModelCard(id=served_model,
root=served_model,
permission=[ModelPermission()])
]
return ModelList(data=model_cards)
def create_logprobs(token_ids: List[int],
id_logprobs: List[Dict[int, float]],
initial_text_offset: int = 0) -> LogProbs:
"""Create OpenAI-style logprobs."""
logprobs = LogProbs()
last_token_len = 0
for token_id, id_logprob in zip(token_ids, id_logprobs):
token = tokenizer.convert_ids_to_tokens(token_id)
logprobs.tokens.append(token)
logprobs.token_logprobs.append(id_logprob[token_id])
if len(logprobs.text_offset) == 0:
logprobs.text_offset.append(initial_text_offset)
else:
logprobs.text_offset.append(logprobs.text_offset[-1] +
last_token_len)
last_token_len = len(token)
logprobs.top_logprobs.append({
tokenizer.convert_ids_to_tokens(i): p
for i, p in id_logprob.items()
})
return logprobs
@app.post("/v1/chat/completions")
async def create_chat_completion(raw_request: Request):
"""Completion API similar to OpenAI's API.
See https://platform.openai.com/docs/api-reference/chat/create
for the API specification. This API mimics the OpenAI ChatCompletion API.
NOTE: Currently we do not support the following features:
- logit_bias (to be supported by vLLM engine)
"""
request = ChatCompletionRequest(**await raw_request.json())
logger.info(f"Received chat completion request: {request}")
error_check_ret = await check_model(request)
if error_check_ret is not None:
return error_check_ret
if request.logit_bias is not None:
# TODO: support logit_bias in vLLM engine.
return create_error_response(HTTPStatus.BAD_REQUEST,
"logit_bias is not currently supported")
prompt_token_ids = prepare_messages_for_inference(tokenizer, request.messages, request.functions).tolist()[0]
error_check_ret = await check_length(request, prompt_token_ids, engine_model_config)
if error_check_ret is not None:
return error_check_ret
model_name = request.model
request_id = f"cmpl-{random_uuid()}"
created_time = int(time.time())
try:
sampling_params = SamplingParams(
n=request.n,
presence_penalty=request.presence_penalty,
frequency_penalty=request.frequency_penalty,
temperature=request.temperature,
top_p=request.top_p,
stop=request.stop,
max_tokens=request.max_tokens,
best_of=request.best_of,
top_k=request.top_k,
ignore_eos=request.ignore_eos,
use_beam_search=request.use_beam_search,
)
except ValueError as e:
return create_error_response(HTTPStatus.BAD_REQUEST, str(e))
result_generator = engine.generate(None, sampling_params, request_id, prompt_token_ids=prompt_token_ids)
async def abort_request() -> None:
await engine.abort(request_id)
def create_stream_response_json(
index: int,
text: str,
finish_reason: Optional[str] = None,
) -> str:
choice_data = ChatCompletionResponseStreamChoice(
index=index,
delta=DeltaMessage(content=text),
finish_reason=finish_reason,
)
response = ChatCompletionStreamResponse(
id=request_id,
created=created_time,
model=model_name,
choices=[choice_data],
)
response_json = response.json(ensure_ascii=False)
return response_json
async def completion_stream_generator() -> AsyncGenerator[str, None]:
# First chunk with role
for i in range(request.n):
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(role="assistant"),
finish_reason=None,
)
chunk = ChatCompletionStreamResponse(id=request_id,
choices=[choice_data],
model=model_name)
data = chunk.json(exclude_unset=True, ensure_ascii=False)
yield f"data: {data}\n\n"
previous_texts = [""] * request.n
previous_num_tokens = [0] * request.n
async for res in result_generator:
res: RequestOutput
for output in res.outputs:
i = output.index
delta_text = output.text[len(previous_texts[i]):]
previous_texts[i] = output.text
previous_num_tokens[i] = len(output.token_ids)
response_json = create_stream_response_json(
index=i,
text=delta_text,
)
yield f"data: {response_json}\n\n"
if output.finish_reason is not None:
response_json = create_stream_response_json(
index=i,
text="",
finish_reason=output.finish_reason,
)
yield f"data: {response_json}\n\n"
yield "data: [DONE]\n\n"
# Streaming response
if request.stream:
background_tasks = BackgroundTasks()
# Abort the request if the client disconnects.
background_tasks.add_task(abort_request)
return StreamingResponse(completion_stream_generator(),
media_type="text/event-stream",
background=background_tasks)
# Non-streaming response
final_res: RequestOutput = None
async for res in result_generator:
if await raw_request.is_disconnected():
# Abort the request if the client disconnects.
await abort_request()
return create_error_response(HTTPStatus.BAD_REQUEST,
"Client disconnected")
final_res = res
assert final_res is not None
choices = []
for output in final_res.outputs:
if output.text.startswith("to=functions."):
function_call_content = output.text[len("to=functions."):]
function_name, arguments = function_call_content.split(":\n")
choice_data = ChatCompletionResponseChoice(
index=output.index,
message=ChatMessage(
role="assistant",
function_call=FunctionCall(
name=function_name,
arguments=arguments
)
),
finish_reason="function_call" if output.finish_reason == "stop" else output.finish_reason,
)
else:
choice_data = ChatCompletionResponseChoice(
index=output.index,
message=ChatMessage(role="assistant", content=output.text),
finish_reason=output.finish_reason,
)
choices.append(choice_data)
num_prompt_tokens = len(final_res.prompt_token_ids)
num_generated_tokens = sum(
len(output.token_ids) for output in final_res.outputs)
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=num_generated_tokens,
total_tokens=num_prompt_tokens + num_generated_tokens,
)
response = ChatCompletionResponse(
id=request_id,
created=created_time,
model=model_name,
choices=choices,
usage=usage,
)
if request.stream:
# When user requests streaming but we don't stream, we still need to
# return a streaming response with a single event.
response_json = response.json(ensure_ascii=False)
async def fake_stream_generator() -> AsyncGenerator[str, None]:
yield f"data: {response_json}\n\n"
yield "data: [DONE]\n\n"
return StreamingResponse(fake_stream_generator(),
media_type="text/event-stream")
return response
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="vLLM OpenAI-Compatible RESTful API server.")
parser.add_argument("--host",
type=str,
default="localhost",
help="host name")
parser.add_argument("--port", type=int, default=8000, help="port number")
parser.add_argument("--allow-credentials",
action="store_true",
help="allow credentials")
parser.add_argument("--allowed-origins",
type=json.loads,
default=["*"],
help="allowed origins")
parser.add_argument("--allowed-methods",
type=json.loads,
default=["*"],
help="allowed methods")
parser.add_argument("--allowed-headers",
type=json.loads,
default=["*"],
help="allowed headers")
parser.add_argument("--served-model-name",
type=str,
default=None,
help="The model name used in the API. If not "
"specified, the model name will be the same as "
"the huggingface name.")
parser = AsyncEngineArgs.add_cli_args(parser)
args = parser.parse_args()
app.add_middleware(
CORSMiddleware,
allow_origins=args.allowed_origins,
allow_credentials=args.allow_credentials,
allow_methods=args.allowed_methods,
allow_headers=args.allowed_headers,
)
logger.info(f"args: {args}")
if args.served_model_name is not None:
served_model = args.served_model_name
else:
served_model = args.model
engine_args = AsyncEngineArgs.from_cli_args(args)
engine = AsyncLLMEngine.from_engine_args(engine_args)
engine_model_config = asyncio.run(engine.get_model_config())
# A separate tokenizer to map token IDs to strings.
tokenizer = get_tokenizer(engine_args.tokenizer,
tokenizer_mode=engine_args.tokenizer_mode)
uvicorn.run(app,
host=args.host,
port=args.port,
log_level="info",
timeout_keep_alive=TIMEOUT_KEEP_ALIVE)