-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathdemo.py
234 lines (183 loc) · 9.21 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import argparse
import cv2
import numpy as np
from torch import from_numpy, jit
from modules.keypoints import extract_keypoints, group_keypoints
from modules.pose import Pose
from action_detect.detect import action_detect
import os
from math import ceil, floor
os.environ["PYTORCH_JIT"] = "0"
class ImageReader(object):
def __init__(self, file_names):
self.file_names = file_names
self.max_idx = len(file_names)
def __iter__(self):
self.idx = 0
return self
def __next__(self):
if self.idx == self.max_idx:
raise StopIteration
img = cv2.imread(self.file_names[self.idx], cv2.IMREAD_COLOR)
if img.size == 0:
raise IOError('Image {} cannot be read'.format(self.file_names[self.idx]))
self.idx = self.idx + 1
return img
class VideoReader(object):
def __init__(self, file_name,code_name):
self.file_name = file_name
self.code_name = str(code_name)
try: # OpenCV needs int to read from webcam
self.file_name = int(file_name)
except ValueError:
pass
def __iter__(self):
self.cap = cv2.VideoCapture(self.file_name)
if not self.cap.isOpened():
raise IOError('Video {} cannot be opened'.format(self.file_name))
return self
def __next__(self):
was_read, img = self.cap.read()
if not was_read:
raise StopIteration
# print(self.cap.get(7),self.cap.get(5))
cv2.putText(img,self.code_name, (5,35),
cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255))
return img
def normalize(img, img_mean, img_scale):
img = np.array(img, dtype=np.float32)
img = (img - img_mean) * img_scale
return img
def pad_width(img, stride, pad_value, min_dims):
h, w, _ = img.shape
h = min(min_dims[0], h)
min_dims[0] = ceil(min_dims[0] / float(stride)) * stride
min_dims[1] = max(min_dims[1], w)
min_dims[1] = ceil(min_dims[1] / float(stride)) * stride
pad = []
pad.append(int(floor((min_dims[0] - h) / 2.0)))
pad.append(int(floor((min_dims[1] - w) / 2.0)))
pad.append(int(min_dims[0] - h - pad[0]))
pad.append(int(min_dims[1] - w - pad[1]))
padded_img = cv2.copyMakeBorder(img, pad[0], pad[2], pad[1], pad[3],
cv2.BORDER_CONSTANT, value=pad_value)
return padded_img, pad
def infer_fast(net, img, net_input_height_size, stride, upsample_ratio, cpu,
pad_value=(0, 0, 0), img_mean=(128, 128, 128), img_scale=1/256):
height, width, _ = img.shape
scale = net_input_height_size / height
scaled_img = cv2.resize(img, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
scaled_img = normalize(scaled_img, img_mean, img_scale)
min_dims = [net_input_height_size, max(scaled_img.shape[1], net_input_height_size)]
padded_img, pad = pad_width(scaled_img, stride, pad_value, min_dims)
tensor_img = from_numpy(padded_img).permute(2, 0, 1).unsqueeze(0).float()
if not cpu:
tensor_img = tensor_img.cuda()
stages_output = net(tensor_img)
# print(stages_output)
stage2_heatmaps = stages_output[-2]
heatmaps = np.transpose(stage2_heatmaps.squeeze().cpu().data.numpy(), (1, 2, 0))
heatmaps = cv2.resize(heatmaps, (0, 0), fx=upsample_ratio, fy=upsample_ratio, interpolation=cv2.INTER_CUBIC)
stage2_pafs = stages_output[-1]
pafs = np.transpose(stage2_pafs.squeeze().cpu().data.numpy(), (1, 2, 0))
pafs = cv2.resize(pafs, (0, 0), fx=upsample_ratio, fy=upsample_ratio, interpolation=cv2.INTER_CUBIC)
return heatmaps, pafs, scale, pad
def run_demo(net,action_net, image_provider, height_size, cpu):
net = net.eval()
if not cpu:
net = net.cuda()
stride = 8
upsample_ratio = 4
num_keypoints = Pose.num_kpts
i = 0
for img in image_provider:
orig_img = img.copy()
# print(i)
if i % 1 == 0:
heatmaps, pafs, scale, pad = infer_fast(net, img, height_size, stride, upsample_ratio, cpu)
total_keypoints_num = 0
all_keypoints_by_type = []
for kpt_idx in range(num_keypoints): # 19th for bg
total_keypoints_num += extract_keypoints(heatmaps[:, :, kpt_idx], all_keypoints_by_type, total_keypoints_num)
pose_entries, all_keypoints = group_keypoints(all_keypoints_by_type, pafs, demo=True)
for kpt_id in range(all_keypoints.shape[0]):
all_keypoints[kpt_id, 0] = (all_keypoints[kpt_id, 0] * stride / upsample_ratio - pad[1]) / scale
all_keypoints[kpt_id, 1] = (all_keypoints[kpt_id, 1] * stride / upsample_ratio - pad[0]) / scale
current_poses = []
for n in range(len(pose_entries)):
if len(pose_entries[n]) == 0:
continue
pose_keypoints = np.ones((num_keypoints, 2), dtype=np.int32) * -1
for kpt_id in range(num_keypoints):
if pose_entries[n][kpt_id] != -1.0: # keypoint was found
pose_keypoints[kpt_id, 0] = int(all_keypoints[int(pose_entries[n][kpt_id]), 0])
pose_keypoints[kpt_id, 1] = int(all_keypoints[int(pose_entries[n][kpt_id]), 1])
pose = Pose(pose_keypoints, pose_entries[n][18])
if len(pose.getKeyPoints()) >= 10:
current_poses.append(pose)
# current_poses.append(pose)
for pose in current_poses:
pose.img_pose = pose.draw(img,show_draw=True)
crown_proportion = pose.bbox[2]/pose.bbox[3] #宽高比
pose = action_detect(action_net,pose,crown_proportion)
if pose.pose_action == 'fall':
cv2.rectangle(img, (pose.bbox[0], pose.bbox[1]),
(pose.bbox[0] + pose.bbox[2], pose.bbox[1] + pose.bbox[3]), (0, 0, 255),thickness=3)
cv2.putText(img, 'state: {}'.format(pose.pose_action), (pose.bbox[0], pose.bbox[1] - 16),
cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 255))
else:
cv2.rectangle(img, (pose.bbox[0], pose.bbox[1]),
(pose.bbox[0] + pose.bbox[2], pose.bbox[1] + pose.bbox[3]), (0, 255, 0))
cv2.putText(img, 'state: {}'.format(pose.pose_action), (pose.bbox[0], pose.bbox[1] - 16),
cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 255, 0))
img = cv2.addWeighted(orig_img, 0.6, img, 0.4, 0)
cv2.imshow('Lightweight Human Pose Estimation Python Demo', img)
cv2.waitKey(1)
i += 1
cv2.destroyAllWindows()
def detect_main(video_source = '',image_source = '',video_name=''):
parser = argparse.ArgumentParser(
description='''Lightweight human pose estimation python demo.
This is just for quick results preview.
Please, consider c++ demo for the best performance.''')
parser.add_argument('--checkpoint-path', type=str, default='openpose.jit',
help='path to the checkpoint')
parser.add_argument('--height-size', type=int, default=256, help='network input layer height size')
parser.add_argument('--video', type=str, default='', help='path to video file or camera id')
parser.add_argument('--images', nargs='+',
default='',
help='path to input image(s)')
parser.add_argument('--cpu',action='store_true', help='run network inference on cpu')
parser.add_argument('--code_name',type=str,default='None',help='the name of video')
# parser.add_argument('--track', type=int, default=0, help='track pose id in video')
# parser.add_argument('--smooth', type=int, default=1, help='smooth pose keypoints')
args = parser.parse_args()
args.video = video_source
args.images = image_source
if video_name != '':
args.code_name = video_name
if args.video == '' and args.images == '':
raise ValueError('Either --video or --image has to be provided')
net = jit.load(r'.\weights\openpose.jit')
# *************************************************************************
action_net = jit.load(r'.\action_detect\checkPoint\action.jit')
# ************************************************************************
frame_provider = ImageReader(args.images)
if args.video != '':
frame_provider = VideoReader(args.video,args.code_name)
# print(frame_provider)
else:
images_dir = []
if os.path.isdir(args.images):
for img_dir in os.listdir(args.images):
images_dir.append(os.path.join(args.images, img_dir))
frame_provider = ImageReader(images_dir)
else:
img = cv2.imread(args.images, cv2.IMREAD_COLOR)
frame_provider = [img]
# *************************************************************************
# args.track = 0
run_demo(net, action_net, frame_provider, args.height_size, args.cpu)
if __name__ == '__main__':
detect_main(video_source=r'C:\Users\lieweiai\Desktop\185eaf21bf45a652eb354dc5bb6792de.mp4',video_name='video1')
# detect_main(video_source='C:/Users/lieweiai/Desktop/96507864-1-160.mp4')