forked from pmaji/crypto-whale-watching-app
-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
783 lines (689 loc) · 30.8 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
# modules
# dash-related libraries
import dash
from dash.dependencies import Output, Event
from math import log10, floor, isnan
from datetime import datetime
from random import randint
import dash_core_components as dcc
import dash_html_components as html
import colorama
import sys
import getopt
# non-dash-related libraries
import plotly.graph_objs as go
import pandas as pd
import cbpro
import numpy as np
# modules added by contributors
import time
import threading
from queue import Queue
# custom library
from gdax_book import GDaxBook
colorama.init()
# creating variables to facilitate later parameterization
debugLevel = 3
debugLevels = ["Special Debug","Debug","Info","Warnings","Errors"]
debugColors = ['\033[34m','\033[90m','\033[32m','\033[33;1m','\033[31m']
serverPort = 8050
clientRefresh = 1
desiredPairRefresh = 10000 # (in ms) The lower it is, the better is it regarding speed of at least some pairs, the higher it is, the less cpu load it takes.
js_extern = "https://cdn.rawgit.com/pmaji/crypto-whale-watching-app/master/main.js"
noDouble = True # if activatet each order is in case of beeing part of a ladder just shown once (just as a bubble, not as a ladder)
SYMBOLS = {"USD": "$", "BTC": "₿", "EUR": "€", "GBP": "£"} # used for the tooltip
SIGNIFICANT = {"USD": 2, "BTC": 5, "EUR": 2, "GBP": 2} # used for rounding
TBL_PRICE = 'price'
TBL_VOLUME = 'volume'
tables = {}
depth_ask = {}
depth_bid = {}
marketPrice = {}
prepared = {}
shape_bid = {}
shape_ask = {}
timeStampsGet = {} # For storing timestamp of Data Refresh
timeStamps = {} # For storing timestamp from calc start at calc end
sendCache = {}
first_prepare = True
first_pull = True
overallNewData = False
class Exchange:
ticker = []
client = ""
def __init__(self, pName, pTicker, pStamp):
self.name = pName
self.ticker.extend(pTicker)
self.millis = pStamp
class Pair:
# Class to store a pair with its respective threads
def __init__(self, pExchange, pTicker):
self.ob_Inst = {}
self.threadWebsocket = {}
self.threadPrepare = {}
self.threadRecalc = {}
self.Dataprepared = False
self.webSocketKill = 1
self.lastStamp = 0
self.usedStamp = 0
self.newData = False
self.name = pExchange + " " + pTicker
self.ticker = pTicker
self.lastUpdate = "0"
self.exchange = pExchange
self.prepare = False
self.websocket = False
self.combined = pExchange + pTicker
PAIRS = [] # Array containing all pairs
E_GDAX = Exchange("GDAX", [
"ETH-USD", "ETH-EUR", "ETH-BTC",
"BTC-USD", "BTC-EUR", "BTC-GBP",
"LTC-USD", "LTC-EUR", "LTC-BTC",
"BCH-USD", "BCH-EUR", "BCH-BTC"], 0)
for ticker in E_GDAX.ticker:
cObj = Pair(E_GDAX.name, ticker)
PAIRS.append(cObj)
# creates a cache to speed up load time and facilitate refreshes
def get_data_cache(ticker):
return tables[ticker]
def get_All_data():
return prepared
def getSendCache():
return sendCache
def calc_data(pair, range=0.05, maxSize=32, minVolumePerc=0.01, ob_points=60):
global tables, timeStamps, shape_bid, shape_ask, E_GDAX, marketPrice, timeStampsGet
# function to get data from GDAX to be referenced in our call-back later
# ticker a string to particular Ticker (e.g. ETH-USD)
# range is the deviation visible from current price
# maxSize is a parameter to limit the maximum size of the bubbles in the viz
# minVolumePerc is used to set the minimum volume needed for a price-point to be included in the viz
ticker = pair.ticker
exchange = pair.exchange
combined = exchange + ticker
if pair.exchange == E_GDAX.name:
# order_book = gdax.PublicClient().get_product_order_book(ticker, level=3)
order_book = pair.ob_Inst.get_current_book()
pair.usedStamp = getStamp()
ask_tbl = pd.DataFrame(data=order_book['asks'], columns=[
TBL_PRICE, TBL_VOLUME, 'address'])
bid_tbl = pd.DataFrame(data=order_book['bids'], columns=[
TBL_PRICE, TBL_VOLUME, 'address'])
timeStampsGet[pair.combined] = datetime.now().strftime("%H:%M:%S") # save timestamp at data pull time
# Determine what currencies we're working with to make the tool tip more dynamic.
currency = ticker.split("-")[0]
base_currency = ticker.split("-")[1]
sig_use = SIGNIFICANT.get(base_currency.upper(), 2)
symbol = SYMBOLS.get(base_currency.upper(), "")
try:
first_ask = float(ask_tbl.iloc[1, 0])
except (IndexError):
log(4,"Empty data for " + combined + " Will wait 3s")
time.sleep(3)
return False
# prepare Price
ask_tbl[TBL_PRICE] = pd.to_numeric(ask_tbl[TBL_PRICE])
bid_tbl[TBL_PRICE] = pd.to_numeric(bid_tbl[TBL_PRICE])
# data from websocket are not sorted yet
ask_tbl = ask_tbl.sort_values(by=TBL_PRICE, ascending=True)
bid_tbl = bid_tbl.sort_values(by=TBL_PRICE, ascending=False)
# get first on each side
first_ask = float(ask_tbl.iloc[1, 0])
# get perc for ask/ bid
perc_above_first_ask = ((1.0 + range) * first_ask)
perc_above_first_bid = ((1.0 - range) * first_ask)
# limits the size of the table so that we only look at orders 5% above and under market price
ask_tbl = ask_tbl[(ask_tbl[TBL_PRICE] <= perc_above_first_ask)]
bid_tbl = bid_tbl[(bid_tbl[TBL_PRICE] >= perc_above_first_bid)]
# changing this position after first filter makes calc faster
bid_tbl[TBL_VOLUME] = pd.to_numeric(bid_tbl[TBL_VOLUME])
ask_tbl[TBL_VOLUME] = pd.to_numeric(ask_tbl[TBL_VOLUME])
# prepare everything for depchart
ob_step = (perc_above_first_ask - first_ask) / ob_points
ob_ask = pd.DataFrame(columns=[TBL_PRICE, TBL_VOLUME, 'address', 'text'])
ob_bid = pd.DataFrame(columns=[TBL_PRICE, TBL_VOLUME, 'address', 'text'])
# Following is creating a new tbl 'ob_bid' which contains the summed volume and adress-count from current price to target price
i = 1
last_ask = first_ask
last_bid = first_ask
current_ask_volume = 0
current_bid_volume = 0
current_ask_adresses = 0
current_bid_adresses = 0
while i < ob_points:
# Get Borders for ask/ bid
current_ask_border = first_ask + (i * ob_step)
current_bid_border = first_ask - (i * ob_step)
# Get Volume
current_ask_volume += ask_tbl.loc[
(ask_tbl[TBL_PRICE] >= last_ask) & (ask_tbl[TBL_PRICE] < current_ask_border), TBL_VOLUME].sum()
current_bid_volume += bid_tbl.loc[
(bid_tbl[TBL_PRICE] <= last_bid) & (bid_tbl[TBL_PRICE] > current_bid_border), TBL_VOLUME].sum()
# Get Adresses
current_ask_adresses += ask_tbl.loc[
(ask_tbl[TBL_PRICE] >= last_ask) & (ask_tbl[TBL_PRICE] < current_ask_border), 'address'].count()
current_bid_adresses += bid_tbl.loc[
(bid_tbl[TBL_PRICE] <= last_bid) & (bid_tbl[TBL_PRICE] > current_bid_border), 'address'].count()
# Prepare Text
ask_text = (str(round_sig(current_ask_volume, 3, 0, sig_use)) + currency + " (from " + str(current_ask_adresses) +
" orders) up to " + str(round_sig(current_ask_border, 3, 0, sig_use)) + symbol)
bid_text = (str(round_sig(current_bid_volume, 3, 0, sig_use)) + currency + " (from " + str(current_bid_adresses) +
" orders) down to " + str(round_sig(current_bid_border, 3, 0, sig_use)) + symbol)
# Save Data
ob_ask.loc[i - 1] = [current_ask_border, current_ask_volume, current_ask_adresses, ask_text]
ob_bid.loc[i - 1] = [current_bid_border, current_bid_volume, current_bid_adresses, bid_text]
i += 1
last_ask = current_ask_border
last_bid = current_bid_border
# Get Market Price
try:
mp = round_sig((ask_tbl[TBL_PRICE].iloc[0] +
bid_tbl[TBL_PRICE].iloc[0]) / 2.0, 3, 0, sig_use)
except (IndexError):
log(4,"Empty data for " + combined + " Will wait 3s")
time.sleep(3)
return False
bid_tbl = bid_tbl.iloc[::-1] # flip the bid table so that the merged full_tbl is in logical order
fulltbl = bid_tbl.append(ask_tbl) # append the buy and sell side tables to create one cohesive table
minVolume = fulltbl[TBL_VOLUME].sum() * minVolumePerc # Calc minimum Volume for filtering
fulltbl = fulltbl[
(fulltbl[TBL_VOLUME] >= minVolume)] # limit our view to only orders greater than or equal to the minVolume size
fulltbl['sqrt'] = np.sqrt(fulltbl[
TBL_VOLUME]) # takes the square root of the volume (to be used later on for the purpose of sizing the order bubbles)
final_tbl = fulltbl.groupby([TBL_PRICE])[
[TBL_VOLUME]].sum() # transforms the table for a final time to craft the data view we need for analysis
final_tbl['n_unique_orders'] = fulltbl.groupby(
TBL_PRICE).address.nunique().astype(int)
final_tbl = final_tbl[(final_tbl['n_unique_orders'] <= 20.0)]
final_tbl[TBL_PRICE] = final_tbl.index
final_tbl[TBL_PRICE] = final_tbl[TBL_PRICE].apply(round_sig, args=(3, 0, sig_use))
final_tbl[TBL_VOLUME] = final_tbl[TBL_VOLUME].apply(round_sig, args=(1, 2))
final_tbl['n_unique_orders'] = final_tbl['n_unique_orders'].apply(round_sig, args=(0,))
final_tbl['sqrt'] = np.sqrt(final_tbl[TBL_VOLUME])
final_tbl['total_price'] = (((final_tbl['volume'] * final_tbl['price']).round(2)).apply(lambda x: "{:,}".format(x)))
# Following lines fix double drawing of orders in case it´s a ladder but bigger than 1%
if noDouble:
bid_tbl = bid_tbl[(bid_tbl['volume'] < minVolume)]
ask_tbl = ask_tbl[(ask_tbl['volume'] < minVolume)]
bid_tbl['total_price'] = bid_tbl['volume'] * bid_tbl['price']
ask_tbl['total_price'] = ask_tbl['volume'] * ask_tbl['price']
# Get Dataset for Volume Grouping
vol_grp_bid = bid_tbl.groupby([TBL_VOLUME]).agg(
{TBL_PRICE: [np.min, np.max, 'count'], TBL_VOLUME: np.sum, 'total_price': np.sum})
vol_grp_ask = ask_tbl.groupby([TBL_VOLUME]).agg(
{TBL_PRICE: [np.min, np.max, 'count'], TBL_VOLUME: np.sum, 'total_price': np.sum})
# Rename column names for Volume Grouping
vol_grp_bid.columns = ['min_Price', 'max_Price', 'count', TBL_VOLUME, 'total_price']
vol_grp_ask.columns = ['min_Price', 'max_Price', 'count', TBL_VOLUME, 'total_price']
# Filter data by min Volume, more than 1 (intefere with bubble), less than 70 (mostly 1 or 0.5 ETH humans)
vol_grp_bid = vol_grp_bid[
((vol_grp_bid[TBL_VOLUME] >= minVolume) & (vol_grp_bid['count'] >= 2.0) & (vol_grp_bid['count'] < 70.0))]
vol_grp_ask = vol_grp_ask[
((vol_grp_ask[TBL_VOLUME] >= minVolume) & (vol_grp_ask['count'] >= 2.0) & (vol_grp_ask['count'] < 70.0))]
# Get the size of each order
vol_grp_bid['unique'] = vol_grp_bid.index.get_level_values(TBL_VOLUME)
vol_grp_ask['unique'] = vol_grp_ask.index.get_level_values(TBL_VOLUME)
# Round the size of order
vol_grp_bid['unique'] = vol_grp_bid['unique'].apply(round_sig, args=(3, 0, sig_use))
vol_grp_ask['unique'] = vol_grp_ask['unique'].apply(round_sig, args=(3, 0, sig_use))
# Round the Volume
vol_grp_bid[TBL_VOLUME] = vol_grp_bid[TBL_VOLUME].apply(round_sig, args=(1, 0, sig_use))
vol_grp_ask[TBL_VOLUME] = vol_grp_ask[TBL_VOLUME].apply(round_sig, args=(1, 0, sig_use))
# Round the Min/ Max Price
vol_grp_bid['min_Price'] = vol_grp_bid['min_Price'].apply(round_sig, args=(3, 0, sig_use))
vol_grp_ask['min_Price'] = vol_grp_ask['min_Price'].apply(round_sig, args=(3, 0, sig_use))
vol_grp_bid['max_Price'] = vol_grp_bid['max_Price'].apply(round_sig, args=(3, 0, sig_use))
vol_grp_ask['max_Price'] = vol_grp_ask['max_Price'].apply(round_sig, args=(3, 0, sig_use))
# Round and format the Total Price
vol_grp_bid['total_price'] = (vol_grp_bid['total_price'].round(sig_use).apply(lambda x: "{:,}".format(x)))
vol_grp_ask['total_price'] = (vol_grp_ask['total_price'].round(sig_use).apply(lambda x: "{:,}".format(x)))
# Append individual text to each element
vol_grp_bid['text'] = ("There are " + vol_grp_bid['count'].map(str) + " orders " + vol_grp_bid['unique'].map(
str) + " " + currency +
" each, from " + symbol + vol_grp_bid['min_Price'].map(str) + " to " + symbol +
vol_grp_bid['max_Price'].map(str) + " resulting in a total of " + vol_grp_bid[
TBL_VOLUME].map(str) + " " + currency + " worth " + symbol + vol_grp_bid[
'total_price'].map(str))
vol_grp_ask['text'] = ("There are " + vol_grp_ask['count'].map(str) + " orders " + vol_grp_ask['unique'].map(
str) + " " + currency +
" each, from " + symbol + vol_grp_ask['min_Price'].map(str) + " to " + symbol +
vol_grp_ask['max_Price'].map(str) + " resulting in a total of " + vol_grp_ask[
TBL_VOLUME].map(str) + " " + currency + " worth " + symbol + vol_grp_ask[
'total_price'].map(str))
# Save data global
shape_ask[combined] = vol_grp_ask
shape_bid[combined] = vol_grp_bid
cMaxSize = final_tbl['sqrt'].max() # Fixing Bubble Size
# nifty way of ensuring the size of the bubbles is proportional and reasonable
sizeFactor = maxSize / cMaxSize
final_tbl['sqrt'] = final_tbl['sqrt'] * sizeFactor
# making the tooltip column for our charts
final_tbl['text'] = (
"There is a " + final_tbl[TBL_VOLUME].map(str) + " " + currency + " order for " + symbol + final_tbl[
TBL_PRICE].map(str) + " being offered by " + final_tbl['n_unique_orders'].map(
str) + " unique orders worth " + symbol + final_tbl['total_price'].map(str))
# determine buys / sells relative to last market price; colors price bubbles based on size
# Buys are green, Sells are Red. Probably WHALES are highlighted by being brighter, detected by unqiue order count.
final_tbl['colorintensity'] = final_tbl['n_unique_orders'].apply(calcColor)
final_tbl.loc[(final_tbl[TBL_PRICE] > mp), 'color'] = \
'rgb(' + final_tbl.loc[(final_tbl[TBL_PRICE] >
mp), 'colorintensity'].map(str) + ',0,0)'
final_tbl.loc[(final_tbl[TBL_PRICE] <= mp), 'color'] = \
'rgb(0,' + final_tbl.loc[(final_tbl[TBL_PRICE]
<= mp), 'colorintensity'].map(str) + ',0)'
timeStamps[combined] = timeStampsGet[combined] # now save timestamp of calc start in timestamp used for title
tables[combined] = final_tbl # save table data
marketPrice[combined] = mp # save market price
depth_ask[combined] = ob_ask
depth_bid[combined] = ob_bid
pair.newData = True
pair.prepare = True # just used for first enabling of send prepare
return True
# begin building the dash itself
app = dash.Dash()
app.scripts.append_script({"external_url": js_extern})
# simple layout that can be improved with better CSS/JS later, but it does the job for now
# static_content_before contains all the info we want in our headers that won't be dynamic (for now)
static_content_before = [
html.H2('CRYPTO WHALE WATCHING APP'),
html.H3(html.A('GitHub Link Here (Consider supporting us by giving a star; request new features via "issues" tab)',
href="https://github.com/pmaji/eth_python_tracker")),
html.P([
"Legend: Bright colored mark = likely WHALE ",
"(high volume price point via 1 unique order, or many identical medium-sized orders in a ladder). ", html.Br(),
"Bubbles get darker as the number of unique orders increases. " , html.Br(),
"Hover over bubbles for more info. Note: volume (x-axis) on log-scale. " , html.Br(),
"Click 'Freeze all' button to halt refresh, "
"and hide/show buttons to pick which currency pairs to display. " , html.Br(),
"Only displays orders >= 1% of the volume of the portion of the order book displayed. ", html.Br(),
"If annotations overlap or bubbles cluster, click 'Freeze all' and then zoom in on the area of interest.", html.Br(),
"See GitHub link above for further details."
])
]
cCache = []
for pair in PAIRS:
ticker = pair.ticker
exchange = pair.exchange
graph = 'live-graph-' + exchange + "-" + ticker
cCache.append(html.Br())
cCache.append(html.Div(id=graph))
static_content_after = dcc.Interval(
id='main-interval-component',
interval=clientRefresh * 1000
)
app.layout = html.Div(id='main_container', children=[
html.Div(static_content_before),
html.Div(id='graphs_Container', children=cCache),
html.Div(static_content_after),
])
def prepare_data(ticker, exchange):
combined = exchange + ticker
data = get_data_cache(combined)
pair.newData = False
base_currency = ticker.split("-")[1]
ob_ask = depth_ask[combined]
ob_bid = depth_bid[combined]
#Get Minimum and Maximum
ladder_Bid_Min = fixNan(shape_bid[combined]['volume'].min())
ladder_Bid_Max = fixNan(shape_bid[combined]['volume'].max(), False)
ladder_Ask_Min = fixNan(shape_ask[combined]['volume'].min())
ladder_Ask_Max = fixNan(shape_ask[combined]['volume'].max(), False)
data_min = fixNan(data[TBL_VOLUME].min())
data_max = fixNan(data[TBL_VOLUME].max(), False)
ob_bid_max = fixNan(ob_bid[TBL_VOLUME].max(), False)
ob_ask_max = fixNan(ob_ask[TBL_VOLUME].max(), False)
symbol = SYMBOLS.get(base_currency.upper(), "")
x_min = min([ladder_Bid_Min, ladder_Ask_Min, data_min])
x_max = max([ladder_Bid_Max, ladder_Ask_Max, data_max, ob_ask_max, ob_bid_max])
max_unique = max([fixNan(shape_bid[combined]['unique'].max(), False),
fixNan(shape_ask[combined]['unique'].max(), False)])
width_factor = 15
if max_unique > 0: width_factor = 15 / max_unique
market_price = marketPrice[combined]
bid_trace = go.Scatter(
x=[], y=[],
text=[],
mode='markers', hoverinfo='text',
marker=dict(opacity=0, color='rgb(0,255,0)'))
ask_trace = go.Scatter(
x=[], y=[],
text=[],
mode='markers', hoverinfo='text',
marker=dict(opacity=0, color='rgb(255,0,0)'))
shape_arr = [dict(
# Line Horizontal
type='line',
x0=x_min * 0.5, y0=market_price,
x1=x_max * 1.5, y1=market_price,
line=dict(color='rgb(0, 0, 0)', width=2, dash='dash')
)]
annot_arr = [dict(
x=log10((x_max*0.9)), y=market_price, xref='x', yref='y',
text=str(market_price) + symbol,
showarrow=True, arrowhead=7, ax=20, ay=0,
bgcolor='rgb(0,0,255)', font={'color': '#ffffff'}
)]
# delete these 10 lines below if we want to move to a JS-based coloring system in the future
shape_arr.append(dict(type='rect',
x0=x_min, y0=market_price,
x1=x_max, y1=market_price * 1.05,
line=dict(color='rgb(255, 0, 0)', width=0.01),
fillcolor='rgba(255, 0, 0, 0.04)'))
shape_arr.append(dict(type='rect',
x0=x_min, y0=market_price,
x1=x_max, y1=market_price * 0.95,
line=dict(color='rgb(0, 255, 0)', width=0.01),
fillcolor='rgba(0, 255, 0, 0.04)'))
for index, row in shape_bid[combined].iterrows():
cWidth = row['unique'] * width_factor
vol = row[TBL_VOLUME]
posY = (row['min_Price'] + row['max_Price']) / 2.0
if cWidth > 15:
cWidth = 15
elif cWidth < 2:
cWidth = 2
shape_arr.append(dict(type='line',
opacity=0.5,
x0=vol, y0=row['min_Price'],
x1=vol, y1=row['max_Price'],
line=dict(color='rgb(0, 255, 0)', width=cWidth)))
bid_trace['x'].append(vol)
bid_trace['y'].append(row['min_Price'])
bid_trace['text'].append(row['text'])
bid_trace['text'].append(row['text'])
bid_trace['x'].append(vol)
bid_trace['y'].append(posY)
bid_trace['x'].append(vol)
bid_trace['y'].append(row['max_Price'])
bid_trace['text'].append(row['text'])
for index, row in shape_ask[combined].iterrows():
cWidth = row['unique'] * width_factor
vol = row[TBL_VOLUME]
posY = (row['min_Price'] + row['max_Price']) / 2.0
if cWidth > 15:
cWidth = 15
elif cWidth < 2:
cWidth = 2
shape_arr.append(dict(type='line',
opacity=0.5,
x0=vol, y0=row['min_Price'],
x1=vol, y1=row['max_Price'],
line=dict(color='rgb(255, 0, 0)', width=cWidth)))
ask_trace['x'].append(vol)
ask_trace['y'].append(row['min_Price'])
ask_trace['text'].append(row['text'])
ask_trace['x'].append(vol)
ask_trace['y'].append(posY)
ask_trace['text'].append(row['text'])
ask_trace['x'].append(vol)
ask_trace['y'].append(row['max_Price'])
ask_trace['text'].append(row['text'])
result = {
'data': [
go.Scatter(
x=data[TBL_VOLUME],
y=data[TBL_PRICE],
mode='markers',
text=data['text'],
opacity=0.95,
hoverinfo='text',
marker={
'size': data['sqrt'],
'line': {'width': 0.5, 'color': 'white'},
'color': data['color']
},
), ask_trace, bid_trace, go.Scatter(
x=ob_ask[TBL_VOLUME],
y=ob_ask[TBL_PRICE],
mode='lines',
opacity=0.5,
hoverinfo='text',
text=ob_ask['text'],
line = dict(color = ('rgb(255, 0, 0)'),
width = 2)
),go.Scatter(
x=ob_bid[TBL_VOLUME],
y=ob_bid[TBL_PRICE],
mode='lines',
opacity=0.5,
hoverinfo='text',
text=ob_bid['text'],
line = dict(color = ('rgb(0, 255, 0)'),
width = 2)
)
],
'layout': go.Layout(
# title automatically updates with refreshed market price
title=("The present market price of {} on {} is: {}{} at {}".format(ticker, exchange, symbol,
str(
marketPrice[combined]),
timeStamps[combined])),
xaxis=dict(title='Order Size', type='log', autotick=True,range=[log10(x_min*0.95), log10(x_max*1.03)]),
yaxis={'title': '{} Price'.format(ticker),'range':[market_price*0.94, market_price*1.06]},
hovermode='closest',
# now code to ensure the sizing is right
margin=go.Margin(
l=75, r=75,
b=50, t=50,
pad=4),
paper_bgcolor='#F5F5F5',
plot_bgcolor='#F5F5F5',
# adding the horizontal reference line at market price
shapes=shape_arr,
annotations=annot_arr,
showlegend=False
)
}
return result
def prepare_send():
lCache = []
cData = get_All_data()
for pair in PAIRS:
ticker = pair.ticker
exchange = pair.exchange
graph = 'live-graph-' + exchange + "-" + ticker
lCache.append(html.Br())
if (pair.Dataprepared):
lCache.append(dcc.Graph(
id=graph,
figure=cData[exchange + ticker]
))
else:
lCache.append(html.Div(id=graph))
return lCache
# links up the chart creation to the interval for an auto-refresh
# creates one callback per currency pairing; easy to replicate / add new pairs
@app.callback(Output('graphs_Container', 'children'),
events=[Event('main-interval-component', 'interval')])
def update_Site_data():
return getSendCache()
# explanatory comment here to come
def round_sig(x, sig=3, overwrite=0, minimum=0):
if (x == 0):
return 0.0
elif overwrite > 0:
return round(x, overwrite)
else:
digits = -int(floor(log10(abs(x)))) + (sig - 1)
if digits <= minimum:
return round(x, minimum)
else:
return round(x, digits)
# explanatory comment here to come
def calcColor(x):
response = round(400 / x)
if response > 255:
response = 255
elif response < 30:
response = 30
return response
def fixNan(x, pMin=True):
if isnan(x):
if pMin:
return 99999
else:
return 0
else:
return x
def getStamp():
return int(round(time.time() * 1000))
# watchdog to catch any instances where refresh stops
def watchdog():
global PAIRS
tServer = threading.Thread(target=serverThread)
tServer.daemon = False
tServer.start()
time.sleep(3) # get Server start
log(2,"Server should be running now")
tPreparer = threading.Thread(target=sendPrepareThread)
tPreparer.daemon = False
tPreparer.start()
for pair in PAIRS:
pair.threadWebsocket = threading.Thread(
target=websockThread, args=(pair,))
pair.threadWebsocket.daemon = False
pair.threadWebsocket.start()
time.sleep(3)
log(2,"Web sockets up")
for pair in PAIRS:
pair.threadRecalc = threading.Thread(target=recalcThread, args=(pair,))
pair.threadRecalc.daemon = False
pair.threadRecalc.start()
time.sleep(2.5)
log(2,"ReCalc up")
for pair in PAIRS:
pair.threadPrepare = threading.Thread(
target=preparePairThread, args=(pair,))
pair.threadPrepare.daemon = False
pair.threadPrepare.start()
log(2,"Everything should be running now, starting Watchdog, to control the herd")
while True:
time.sleep(2)
alive = True
for pair in PAIRS:
if not pair.threadRecalc.isAlive():
alive = False
log(2,"Restarting pair Recalc " +
pair.exchange + " " + pair.ticker)
pair.threadRecalc = threading.Thread(
target=recalcThread, args=(pair,))
pair.threadRecalc.daemon = False
pair.threadRecalc.start()
if not pair.threadWebsocket.isAlive():
alive = False
log(2,"Restarting pair Web socket " +
pair.exchange + " " + pair.ticker)
pair.webSocketKill = 1
pair.threadWebsocket = threading.Thread(
target=websockThread, args=(pair,))
pair.threadWebsocket.daemon = False
pair.threadWebsocket.start()
if not pair.threadPrepare.isAlive():
alive = False
log(2,"Restarting pair Prepare worker " +
pair.exchange + " " + pair.ticker)
pair.threadPrepare = threading.Thread(
target=preparePairThread, args=(pair,))
pair.threadPrepare.daemon = False
pair.threadPrepare.start()
if not tServer.isAlive():
alive = False
log(3,"Watchdog detected dead Server, restarting")
tServer = threading.Thread(target=serverThread)
tServer.daemon = False
tServer.start()
if not tPreparer.isAlive():
alive = False
log(3,"Watchdog detected dead Preparer, restarting")
tPreparer = threading.Thread(target=sendPrepareThread)
tPreparer.daemon = False
tPreparer.start()
if not alive:
log(3,"Watchdog got some bad sheeps back to group")
def serverThread():
app.run_server(host='0.0.0.0', port=serverPort)
def sendPrepareThread():
global sendCache, first_prepare, overallNewData
while True:
sendCache = prepare_send()
overallNewData = False
time.sleep(0.5)
while not overallNewData:
time.sleep(0.5)
def recalcThread(pair):
count = 0
refreshes = 0
while True:
if (pair.websocket):
dif = getStamp() - pair.lastStamp
if dif > desiredPairRefresh:
log(1,"Ms Diff for " + pair.ticker + " is " + str(
dif) + " Total refreshes for pair " + str(refreshes))
refreshes += 1
if not calc_data(pair):
count = count + 1
else:
count = 0
pair.lastStamp = pair.usedStamp
if count > 5:
log(3,"Going to kill Web socket from " + pair.ticker)
count = -5
pair.webSocketKill = 0
else:
time.sleep((desiredPairRefresh - dif) / 1000)
def websockThread(pair):
pair.websocket = False
pair.ob_Inst = GDaxBook(pair.ticker)
time.sleep(5)
pair.websocket = True
while True:
kill = 5 / pair.webSocketKill
time.sleep(4)
def preparePairThread(pair):
global prepared, overallNewData
ticker = pair.ticker
exc = pair.exchange
cbn = exc + ticker
while True:
if (pair.prepare):
prepared[cbn] = prepare_data(ticker, exc)
overallNewData = True
pair.Dataprepared = True
while not pair.newData:
time.sleep(0.2)
def handleArgs(argv):
global serverPort, debugLevel, desiredPairRefresh
try:
opts, args = getopt.getopt(
argv, "hp:d:", ["port=","debug=","pRefresh="])
except getopt.GetoptError:
print('app.py -h')
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
print('app.py --port 8050 --pRefresh')
print('--pRefresh indicates the refresh Rate in ms')
sys.exit()
elif opt in ("-p", "--port"):
serverPort = int(arg)
elif opt in ("-d", "--debug"):
debugLevel = int(arg)
elif opt in ("--pRefresh"):
desiredPairRefresh = int(arg)
log(4,"Legend: This is an error message")
log(3,"Legend: This is a warning message")
log(2,"Legend: This is an info message")
log(1,"Legend: This is a debug message")
log(0,"Legend: This is a deep debug message")
log(1,'Web Interface Port is ' + str(serverPort))
log(1,'Debug Level is ' + str(debugLevel))
def log(pLevel, pMessage):
if pLevel >= debugLevel:
text = (str(datetime.now()) + " [" +
debugLevels[pLevel] +
"]: " + str(pMessage))
open("log.txt","a").write(text + "\n")
print(debugColors[pLevel] + text + '\033[0m')
if __name__ == '__main__':
# Initial Load of Data
handleArgs(sys.argv[1:])
watchdog()