forked from mahmoodlab/CLAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_splits_seq.py
executable file
·70 lines (59 loc) · 3.15 KB
/
create_splits_seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import pdb
import os
import pandas as pd
from datasets.dataset_generic import Generic_WSI_Classification_Dataset, Generic_MIL_Dataset, save_splits
import argparse
import numpy as np
parser = argparse.ArgumentParser(description='Creating splits for whole slide classification')
parser.add_argument('--label_frac', type=float, default= 1.0,
help='fraction of labels (default: 1)')
parser.add_argument('--seed', type=int, default=1,
help='random seed (default: 1)')
parser.add_argument('--k', type=int, default=10,
help='number of splits (default: 10)')
parser.add_argument('--task', type=str, choices=['task_1_tumor_vs_normal', 'task_2_tumor_subtyping'])
parser.add_argument('--val_frac', type=float, default= 0.1,
help='fraction of labels for validation (default: 0.1)')
parser.add_argument('--test_frac', type=float, default= 0.1,
help='fraction of labels for test (default: 0.1)')
args = parser.parse_args()
if args.task == 'task_1_tumor_vs_normal':
args.n_classes=2
dataset = Generic_WSI_Classification_Dataset(csv_path = 'dataset_csv/tumor_vs_normal_dummy_clean.csv',
shuffle = False,
seed = args.seed,
print_info = True,
label_dict = {'normal_tissue':0, 'tumor_tissue':1},
patient_strat=True,
ignore=[])
elif args.task == 'task_2_tumor_subtyping':
args.n_classes=3
dataset = Generic_WSI_Classification_Dataset(csv_path = 'dataset_csv/tumor_subtyping_dummy_clean.csv',
shuffle = False,
seed = args.seed,
print_info = True,
label_dict = {'subtype_1':0, 'subtype_2':1, 'subtype_3':2},
patient_strat= True,
patient_voting='maj',
ignore=[])
else:
raise NotImplementedError
num_slides_cls = np.array([len(cls_ids) for cls_ids in dataset.patient_cls_ids])
val_num = np.round(num_slides_cls * args.val_frac).astype(int)
test_num = np.round(num_slides_cls * args.test_frac).astype(int)
if __name__ == '__main__':
if args.label_frac > 0:
label_fracs = [args.label_frac]
else:
label_fracs = [0.1, 0.25, 0.5, 0.75, 1.0]
for lf in label_fracs:
split_dir = 'splits/'+ str(args.task) + '_{}'.format(int(lf * 100))
os.makedirs(split_dir, exist_ok=True)
dataset.create_splits(k = args.k, val_num = val_num, test_num = test_num, label_frac=lf)
for i in range(args.k):
dataset.set_splits()
descriptor_df = dataset.test_split_gen(return_descriptor=True)
splits = dataset.return_splits(from_id=True)
save_splits(splits, ['train', 'val', 'test'], os.path.join(split_dir, 'splits_{}.csv'.format(i)))
save_splits(splits, ['train', 'val', 'test'], os.path.join(split_dir, 'splits_{}_bool.csv'.format(i)), boolean_style=True)
descriptor_df.to_csv(os.path.join(split_dir, 'splits_{}_descriptor.csv'.format(i)))