2
2
3
3
# DeepInteract
4
4
5
- [ ![ Paper] ( http://img.shields.io/badge/paper-arxiv.2110.02423-B31B1B.svg )] ( https://arxiv.org/abs/2110.02423 ) [ ![ DOI] ( https://zenodo.org/badge/DOI/10.5281/zenodo.5546775 .svg )] ( https://doi.org/10.5281/zenodo.5546775 )
5
+ [ ![ Paper] ( http://img.shields.io/badge/paper-arxiv.2110.02423-B31B1B.svg )] ( https://arxiv.org/abs/2110.02423 ) [ ![ DOI] ( https://zenodo.org/badge/DOI/10.5281/zenodo.5797024 .svg )] ( https://doi.org/10.5281/zenodo.5797024 )
6
6
7
7
[ <img src =" https://twixes.gallerycdn.vsassets.io/extensions/twixes/pypi-assistant/1.0.3/1589834023190/Microsoft.VisualStudio.Services.Icons.Default " width =" 50 " />] ( https://pypi.org/project/DeepInteract/ )
8
8
@@ -234,11 +234,12 @@ Now that we know Docker is functioning properly, we can begin building our Docke
234
234
DI_DIR=$(pwd)
235
235
```
236
236
237
- 2. Download the trained model checkpoint .
237
+ 2. Download our trained model checkpoints .
238
238
239
239
```bash
240
240
mkdir -p project/checkpoints
241
- wget -P project/checkpoints https://zenodo.org/record/5546775/files/LitGINI-GeoTran-DilResNet.ckpt
241
+ wget -P project/checkpoints https://zenodo.org/record/5797024/files/LitGINI-GeoTran-DilResNet.ckpt
242
+ wget -P project/checkpoints https://zenodo.org/record/5797024/files/LitGINI-GeoTran-DilResNet-DB5-Fine-Tuned.ckpt
242
243
```
243
244
244
245
3. Build the Docker image (Warning: Requires ~13GB of Space):
@@ -398,9 +399,9 @@ mkdir -p project/datasets/DIPS/final
398
399
cd project/datasets/DIPS/final
399
400
400
401
# Download DIPS-Plus
401
- wget https://zenodo.org/record/5546775 /files/final_raw_dips.tar.gz
402
- wget https://zenodo.org/record/5546775 /files/final_processed_dips.tar.gz.partaa
403
- wget https://zenodo.org/record/5546775 /files/final_processed_dips.tar.gz.partab
402
+ wget https://zenodo.org/record/5797024 /files/final_raw_dips.tar.gz
403
+ wget https://zenodo.org/record/5797024 /files/final_processed_dips.tar.gz.partaa
404
+ wget https://zenodo.org/record/5797024 /files/final_processed_dips.tar.gz.partab
404
405
405
406
# First, reassemble all processed DGLGraphs
406
407
# We split the (tar.gz) archive into two separate parts with
@@ -416,8 +417,8 @@ rm final_processed_dips.tar.gz.parta* final_raw_dips.tar.gz final_processed_dips
416
417
# Download CASP-CAPRI
417
418
mkdir -p ../../CASP_CAPRI/final
418
419
cd ../../CASP_CAPRI/final
419
- wget https://zenodo.org/record/5546775 /files/final_raw_casp_capri.tar.gz
420
- wget https://zenodo.org/record/5546775 /files/final_processed_casp_capri.tar.gz
420
+ wget https://zenodo.org/record/5797024 /files/final_raw_casp_capri.tar.gz
421
+ wget https://zenodo.org/record/5797024 /files/final_processed_casp_capri.tar.gz
421
422
422
423
# Extract CASP-CAPRI
423
424
tar -xzf final_raw_casp_capri.tar.gz
@@ -442,9 +443,10 @@ cd ..
442
443
# Return to root directory of DeepInteract repository
443
444
cd "$DI_DIR"
444
445
445
- # Download the trained model checkpoint
446
+ # Download our trained model checkpoints
446
447
mkdir -p project/checkpoints
447
- wget -P project/checkpoints https://zenodo.org/record/5546775/files/LitGINI-GeoTran-DilResNet.ckpt
448
+ wget -P project/checkpoints https://zenodo.org/record/5797024/files/LitGINI-GeoTran-DilResNet.ckpt
449
+ wget -P project/checkpoints https://zenodo.org/record/5797024/files/LitGINI-GeoTran-DilResNet-DB5-Fine-Tuned.ckpt
448
450
```
449
451
450
452
### Predict interface contact probability maps
0 commit comments