-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
182 lines (137 loc) · 6.08 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from dataclasses import dataclass, field
import json
import math
import pathlib
from typing import Dict, Optional, Sequence
import numpy as np
import torch
from torch.utils.data import Dataset
import transformers
from transformers import Trainer
from transformers.trainer_pt_utils import LabelSmoother
import pandas as pd
import ast
from torch.nn.utils.rnn import pad_sequence
from utils import *
def preprocess(
sources,
tokenizer: transformers.PreTrainedTokenizer,
is_test=False,
) -> Dict:
inputs = []
targets = []
for i, source in enumerate(sources): # source is a tuple: (target_words, tagged_sentences, substitutes)
target_word, tagged_sentence, substitutes = source
substitutes = ', '.join(substitutes)
inputs.append(format_input_prompt(target_word, tagged_sentence))
targets.append(format_target_prompt(substitutes))
# Apply prompt templates
all_input_ids = []
all_labels = []
all_attention_mask = []
for input_text, target_text in zip(inputs, targets):
input_ids = tokenizer.encode(input_text, return_tensors='pt', add_special_tokens=True)[0]
target_ids = tokenizer.encode(target_text, return_tensors='pt', add_special_tokens=False)[0]
input_label_ids = torch.ones_like(input_ids) * -100
target_label_ids = target_ids.clone()
# mask out the target prompt words
target_label_ids[:5] = -100
final_input_ids = torch.cat([input_ids, target_ids], dim=-1)
final_label_ids = torch.cat([input_label_ids, target_label_ids], dim=-1)
all_input_ids.append(final_input_ids)
all_labels.append(final_label_ids)
all_attention_mask.append(torch.ones_like(final_input_ids))
final_input_ids = pad_sequence(all_input_ids, batch_first=True, padding_value=tokenizer.pad_token_id)
print("input ids shape: ", final_input_ids.shape)
final_labels = pad_sequence(all_labels, batch_first=True, padding_value=-100)
final_attention_mask = pad_sequence(all_attention_mask, batch_first=True, padding_value=0).bool()
return dict(
input_ids=final_input_ids,
labels=final_labels,
attention_mask=final_attention_mask,
)
class SupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, raw_data, tokenizer: transformers.PreTrainedTokenizer):
super(SupervisedDataset, self).__init__()
print("Formatting inputs...")
sources = [(t_word, t_sentence, subs) for t_word, t_sentence, subs in zip(raw_data['target_words'], raw_data['tagged_sentences'], raw_data['substitutes'].apply(lambda x : ast.literal_eval(x)))]
data_dict = preprocess(sources, tokenizer)
self.input_ids = data_dict["input_ids"]
self.labels = data_dict["labels"]
self.attention_mask = data_dict["attention_mask"]
def __len__(self):
return len(self.input_ids)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
return dict(
input_ids=self.input_ids[i],
labels=self.labels[i],
attention_mask=self.attention_mask[i],
)
class TestDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, raw_data, tokenizer: transformers.PreTrainedTokenizer):
super(TestDataset, self).__init__()
print("Formatting inputs...")
sources = [(t_word, t_sentence, subs) for t_word, t_sentence, subs in zip(raw_data['target_words'], raw_data['Sentences'], raw_data['substitutes'].apply(lambda x : ast.literal_eval(x)))]
data_dict = preprocess(sources, tokenizer, is_test=True)
self.input_ids = data_dict["input_ids"]
self.labels = data_dict["labels"]
self.attention_mask = data_dict["attention_mask"]
def __len__(self):
return len(self.input_ids)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
return dict(
input_ids=self.input_ids[i],
labels=self.labels[i],
attention_mask=self.attention_mask[i],
)
class LazySupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, raw_data, tokenizer: transformers.PreTrainedTokenizer):
super(LazySupervisedDataset, self).__init__()
self.tokenizer = tokenizer
print("Formatting inputs...Skip in lazy mode")
self.tokenizer = tokenizer
self.raw_data = raw_data
self.cached_data_dict = {}
def __len__(self):
return len(self.raw_data)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
if i in self.cached_data_dict:
return self.cached_data_dict[i]
ret = preprocess([self.raw_data[i]["conversations"]], self.tokenizer)
ret = dict(
input_ids=ret["input_ids"][0],
labels=ret["labels"][0],
attention_mask=ret["attention_mask"][0],
)
self.cached_data_dict[i] = ret
return ret
def make_supervised_data_module(
tokenizer: transformers.PreTrainedTokenizer, data_args
) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
dataset_cls = (
LazySupervisedDataset if data_args.lazy_preprocess else SupervisedDataset
)
print("Loading data...")
# train_json = json.load(open(data_args.data_path, "r"))
train_csv = pd.read_csv(data_args.data_path, index_col=False)
train_dataset = dataset_cls(train_csv, tokenizer=tokenizer)
if data_args.eval_data_path:
eval_json = json.load(open(data_args.eval_data_path, "r"))
eval_dataset = dataset_cls(eval_json, tokenizer=tokenizer)
else:
eval_dataset = None
return dict(train_dataset=train_dataset, eval_dataset=eval_dataset)
def make_test_data_module(
tokenizer: transformers.PreTrainedTokenizer, data_args
) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
dataset_cls = (TestDataset)
print("Loading data...")
# train_json = json.load(open(data_args.data_path, "r"))
test_csv = pd.read_csv(data_args.data_path, index_col=False)
test_dataset = dataset_cls(test_csv, tokenizer=tokenizer)
return dict(test_dataset=test_dataset)