forked from lm-sys/FastChat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
344 lines (281 loc) · 13.4 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
from dataclasses import dataclass, field
import math
from typing import Optional, Tuple
import torch
import transformers
import pandas as pd
from dataset import *
import ast
import spacy
from tqdm import tqdm
# global variables
nlp = spacy.load("en_core_web_sm")
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
trust_remote_code: bool = field(
default=False,
metadata={
"help": "Whether or not to allow for custom models defined on the Hub in their own modeling files"
},
)
padding_side: str = field(
default="right", metadata={"help": "The padding side in tokenizer"}
)
@dataclass
class DataArguments:
data_path: str = field(
default=None, metadata={"help": "Path to the training data."}
)
eval_data_path: str = field(
default=None, metadata={"help": "Path to the evaluation data."}
)
lazy_preprocess: bool = False
# @dataclass
# class TrainingArguments(transformers.TrainingArguments):
# cache_dir: Optional[str] = field(default=None)
# optim: str = field(default="adamw_torch")
# model_max_length: int = field(
# default=512,
# metadata={
# "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
# },
# )
def format_test_prompt(target_word, sentence):
return """You are about to perform a lexical substitution task, considering the proficiency level of the substitute compared to the target word in a sentence. The task is to generate a set of candidate substitutes seperated by commas for a target word in a given sentence. The target word is highlighted in the sentence, encompassed by two double asterisks. The candidate substitutes should be: \n a) common collocations or expressions in actual English use, \n b) grammatically correct, \n c) have an equal or higher language proficiency level compared to the target word. Target word: {} \n Sentence: {} \n Substitutes:""".format(target_word, sentence)
class Evaluator(object):
def __init__(self, args, model, eval_dataset, tokenizer=None, evaluate_all_metrics=False, metrics='hard', print_results=False, aspect='acc', topk=10):
""" Initialize the Evaluator.
Args:
args: TrainingArguments
model: Pretrained model or model_name ('gpt-4', 'ChatGPT', 'para-ls', 'bert-ls')
tokenizer: Pretrained tokenizer
eval_dataset: Path to the evaluation dataset
metrics: 'hard' or 'soft'
print_results: True or False
aspect: 'acc' or 'prof'
topk: top k candidates to be considered as substitutes
"""
self.args = args
self.model = model
self.tokenizer = tokenizer
self.evaluate_all_metrics = evaluate_all_metrics
self.eval_dataset = eval_dataset
self.metrics = metrics
self.print_results = print_results
self.aspect = aspect
self.topk = topk
def calculate_metrics(self, labels, preds):
""" Calculate the precision, recall, and F1 score.
Args:
labels: gold labels -> list
preds: predicted substitutes -> list
Returns:
precision: precision score
recall: recall score
f1: F1 score
"""
# Verify if labels and preds have the same length
if len(labels) != len(preds):
raise ValueError("The length of labels and preds must be the same")
numerator = 0
p_denominator = 0
r_denominator = 0
for label, pred in zip(labels, preds):
if len(label) == 0: continue
pred = pred[:self.topk]
num_acceptable = len(set(label).intersection(set(pred)))
numerator += num_acceptable
p_denominator += len(set(pred))
r_denominator += min(self.topk, len(set(label)))
precision = numerator / p_denominator
recall = numerator / r_denominator
f1 = (2 * precision * recall) / (precision + recall)
return precision, recall, f1
def print_prediction_results(self, preds):
""" Print the prediction results. """
eval_df = pd.read_csv(self.eval_dataset, index_col=False)
print("Printing prediction results...")
# store the predicted substitutes in a txt file
with open(self.args.model_name_or_path+"-"+self.metrics+"-"+self.aspect+"-"+"predicted_substitutes.txt", "w") as f:
for i, row in eval_df.iterrows():
target_word = row['target word']
sentence = row['Sentence']
f.write("Target word: " + target_word + "\n")
f.write("Sentence: " + sentence + "\n")
if self.aspect == 'acc':
f.write("Gold substitutes: " + str(ast.literal_eval(row["acc_subs"])) + "\n")
elif self.aspect == 'prof':
f.write("Gold substitutes: " + str(ast.literal_eval(row["prof_acc_subs"])) + "\n")
f.write("Predicted substitutes: " + str(preds[i]) + "\n")
f.write("--------------------------------------------------" + "\n")
f.write("\n")
def evaluate_soft_metrics(self, labels, preds):
# get the lemma of the predicted substitutes and gold substitutes
model_preds_lemma = []
gold_labels_lemma = []
for pred in preds:
pred_lemma = []
for p in pred:
doc = nlp(p)
pred_lemma.append(doc[0].lemma_)
model_preds_lemma.append(pred_lemma)
for gold in labels:
gold_lemma = []
for g in gold:
doc = nlp(g)
gold_lemma.append(doc[0].lemma_)
gold_labels_lemma.append(gold_lemma)
precision, recall, f1 = self.calculate_metrics(gold_labels_lemma, model_preds_lemma)
return precision, recall, f1
def evaluate_hard_metrics(self, labels, preds):
return self.calculate_metrics(labels, preds)
def get_gold_labels(self):
""" Get the gold labels from the evaluation dataset. """
eval_df = pd.read_csv(self.eval_dataset, index_col=False)
gold_labels = []
for i in tqdm(range(len(eval_df))):
row = eval_df.iloc[i]
if self.aspect == 'acc':
gold_labels.append(ast.literal_eval(row["acc_subs"]))
elif self.aspect == 'prof':
gold_labels.append(ast.literal_eval(row["prof_acc_subs"]))
return gold_labels
def evaluate(self):
""" Evaluate the model on the given dataset. """
model_preds = []
eval_df = pd.read_csv(self.eval_dataset, index_col=False)
if self.model.endswith(".csv"):
# self.model in ['gpt-4', 'gpt-4-32', 'gpt-3.5-turbo-1106', 'gpt-3.5-turbo-1106-32', 'gpt-3.5-turbo', 'para-ls', 'bert-ls']:
pred_df = pd.read_csv(self.model, index_col=False)
for i in tqdm(range(len(eval_df))):
pred_row = pred_df.iloc[i]
pred = pred_row['Substitutes'].split(", ")
model_preds.append(pred)
else:
# eval mode
self.model.eval()
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# no gradient calculation
with torch.no_grad():
for i in tqdm(range(len(eval_df))):
row = eval_df.iloc[i]
target_word = row['target word']
sentence = row['Sentence']
system_input = format_test_prompt(target_word, sentence)
input_ids = tokenizer.encode(system_input, return_tensors='pt', add_special_tokens=True)
input_ids = input_ids.cuda()
# Generate the candidates.
generated_ids = self.model.generate(
input_ids,
max_length=self.tokenizer.model_max_length,
temperature=0.2,
pad_token_id=self.tokenizer.pad_token_id)
# Decode the candidates.
generated_texts = self.tokenizer.batch_decode(
generated_ids, skip_special_tokens=True)
# print(generated_texts)
try:
pred = generated_texts[0].split("Substitutes: ")[1].split(", ")
except Exception as e:
print(e)
print("Generated text: ", generated_texts)
pred = []
model_preds.append(pred)
# print the results if print_results is True
if self.print_results:
self.print_prediction_results(model_preds)
if self.evaluate_all_metrics:
# evaluate all metrics
metrics_ = ["soft", "hard"]
aspects_ = ["acc", "prof"]
for metric in metrics_:
for aspect in aspects_:
self.metrics = metric
self.aspect = aspect
gold_labels = self.get_gold_labels()
assert len(gold_labels) == len(model_preds)
if metric == 'soft':
precision, recall, f1 = self.evaluate_soft_metrics(gold_labels, model_preds)
elif metric == 'hard':
precision, recall, f1 = self.evaluate_hard_metrics(gold_labels, model_preds)
print("Metric: ", metric, "Aspect: ", aspect)
print("Precision: ", precision)
print("Recall: ", recall)
print("F1: ", f1)
print("--------------------------------------------------")
else:
# Compute precision, recall, and F1 seperately for each metrics
gold_labels = self.get_gold_labels()
if self.metrics == 'soft':
return self.evaluate_soft_metrics(gold_labels, model_preds)
elif self.metrics == 'hard':
return self.calculate_metrics(gold_labels, model_preds)
def predict_single_turn(self,
inputs: Tuple[str, str]):
""" Predict substitutes given a Tuple of target word and sentence. """
print("Predicting substitutes for target word: ", inputs[0])
target_word, sentence = inputs
system_input = format_test_prompt(target_word, sentence)
# for input_text, target_text in zip(inputs, targets):
input_ids = tokenizer.encode(system_input, return_tensors='pt', add_special_tokens=True)
input_ids = input_ids.cuda()
print("System input length: ", int(input_ids.ne(self.tokenizer.pad_token_id).sum()))
# Generate the candidates.
# eval mode
self.model.eval()
# no gradient calculation
with torch.no_grad():
generated_ids = self.model.generate(
input_ids,
max_length=self.tokenizer.model_max_length,
temperature=0.2)
# Decode the candidates.
generated_texts = self.tokenizer.batch_decode(
generated_ids, skip_special_tokens=True)
return generated_texts[0]
if __name__ == "__main__":
# load model
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments)
)
model_args, data_args = parser.parse_args_into_dataclasses()
if model_args.model_name_or_path.endswith(".csv"):
# model_args.model_name_or_path in ['gpt-4', 'gpt-4-32', 'gpt-3.5-turbo-1106', 'gpt-3.5-turbo-1106-32', 'gpt-3.5-turbo', 'para-ls', 'bert-ls']:
# evaluate
print("Evaluating predictions from ", model_args.model_name_or_path)
evaluator = Evaluator(model_args, model_args.model_name_or_path, data_args.data_path, evaluate_all_metrics=True, print_results=True)
metrics = evaluator.evaluate()
else:
# Set RoPE scaling factor
config = transformers.AutoConfig.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
)
# Load model and tokenizer
model = transformers.AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
config=config,
trust_remote_code=model_args.trust_remote_code,
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
padding_side='left',
use_fast=False,
trust_remote_code=model_args.trust_remote_code,
)
device = torch.device('cuda:0')
model.to(device)
model = model.bfloat16()
# evaluate
print("Evaluating...")
evaluator = Evaluator(model_args, model, data_args.data_path, tokenizer, evaluate_all_metrics=True, print_results=True)
metrics = evaluator.evaluate()
# predict on single input
# target_word = "obligatory"
# sentence = "Even though it was an **obligatory** experience, I could take part in a community program"
# inputs = (target_word, sentence)
# evaluator = Evaluator(training_args, model, tokenizer, None)
# generated_texts = evaluator.predict_single_turn(inputs)
# print(generated_texts)