-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathcommon.cpp
264 lines (240 loc) · 9.2 KB
/
common.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/* Copyright (C) 2018, Project Pluto. See LICENSE. */
#include <math.h>
#include <assert.h>
#include "norad.h"
#include "norad_in.h"
/* params[1] and [6]-[9] were used in earlier implementations, but are
now unused */
#define c2 params[0]
#define c1 params[2]
#define c4 params[3]
#define xnodcf params[4]
#define t2cof params[5]
void sxpall_common_init( const tle_t *tle, deep_arg_t *deep_arg)
{
const double a1 = pow(xke / tle->xno, two_thirds); /* in Earth radii */
double del1, ao, delo, tval;
/* Recover original mean motion (xnodp) and */
/* semimajor axis (aodp) from input elements. */
deep_arg->cosio = cos( tle->xincl);
deep_arg->cosio2 = deep_arg->cosio * deep_arg->cosio;
deep_arg->eosq = tle->eo*tle->eo;
deep_arg->betao2 = 1-deep_arg->eosq;
deep_arg->betao = sqrt(deep_arg->betao2);
tval = 1.5 * ck2 * (3. * deep_arg->cosio2 - 1.) / (deep_arg->betao * deep_arg->betao2);
del1 = tval / (a1 * a1);
ao = a1 * (1. - del1 * (1. / 3. + del1 * ( 1. + 134./81. * del1)));
delo = tval / (ao * ao);
deep_arg->xnodp = tle->xno / (1+delo); /* in radians/minute */
deep_arg->aodp = ao / (1-delo);
}
void sxpx_common_init( double *params, const tle_t *tle,
init_t *init, deep_arg_t *deep_arg)
{
double
eeta, etasq, perige, pinv, pinvsq,
psisq, qoms24, temp1, temp2, temp3,
cosio4, tsi_squared, x3thm1, xhdot1;
sxpall_common_init( tle, deep_arg);
x3thm1 = 3. * deep_arg->cosio2 - 1.;
/* For perigee below 156 km, the values */
/* of s and qoms2t are altered. */
init->s4 = s_const;
qoms24 = qoms2t;
perige = (deep_arg->aodp * (1-tle->eo) - ae) * earth_radius_in_km;
if( perige < 156.)
{
double temp_val, temp_val_squared;
if(perige <= 98.)
init->s4 = 20;
else
init->s4 = perige-78.;
temp_val = (120. - init->s4) * ae / earth_radius_in_km;
temp_val_squared = temp_val * temp_val;
qoms24 = temp_val_squared * temp_val_squared;
init->s4 = init->s4 / earth_radius_in_km + ae;
} /* End of if(perige <= 156) */
pinv = 1. / (deep_arg->aodp * deep_arg->betao2);
pinvsq = pinv * pinv;
init->tsi = 1. / (deep_arg->aodp - init->s4);
init->eta = deep_arg->aodp*tle->eo*init->tsi;
etasq = init->eta*init->eta;
eeta = tle->eo*init->eta;
psisq = fabs(1-etasq);
tsi_squared = init->tsi * init->tsi;
init->coef = qoms24 * tsi_squared * tsi_squared;
init->coef1 = init->coef / pow(psisq,3.5);
c2 = init->coef1 * deep_arg->xnodp * (deep_arg->aodp*(1+1.5*etasq+eeta*
(4+etasq))+0.75*ck2*init->tsi/psisq*x3thm1*(8+3*etasq*(8+etasq)));
c1 = tle->bstar*c2;
deep_arg->sinio = sin(tle->xincl);
c4 = 2*deep_arg->xnodp*init->coef1*deep_arg->aodp*deep_arg->betao2*
(init->eta*(2+0.5*etasq)+tle->eo*(0.5+2*etasq)-2*ck2*init->tsi/
(deep_arg->aodp*psisq)*(-3*x3thm1*(1-2*eeta+etasq*
(1.5-0.5*eeta))+0.75*(1. - deep_arg->cosio2) *(2*etasq-eeta*(1+etasq))*
cos(2*tle->omegao)));
cosio4 = deep_arg->cosio2 * deep_arg->cosio2;
temp1 = 3*ck2*pinvsq*deep_arg->xnodp;
temp2 = temp1 * ck2 * pinvsq;
temp3 = 1.25 * ck4 * pinvsq * pinvsq * deep_arg->xnodp;
deep_arg->xmdot = deep_arg->xnodp
+ temp1 * deep_arg->betao* x3thm1 / 2.
+ temp2 * deep_arg->betao*
(13-78*deep_arg->cosio2+137*cosio4) / 16.;
deep_arg->omgdot = -temp1 * (1. - 5 * deep_arg->cosio2) / 2.
+ temp2 * (7-114*deep_arg->cosio2+395*cosio4) / 16.
+ temp3 * (3-36*deep_arg->cosio2+49*cosio4);
xhdot1 = -temp1*deep_arg->cosio;
deep_arg->xnodot = xhdot1+(temp2*(4-19*deep_arg->cosio2) / 2.
+ 2*temp3*(3-7*deep_arg->cosio2))*deep_arg->cosio;
xnodcf = 3.5*deep_arg->betao2*xhdot1*c1;
t2cof = 1.5*c1;
}
inline double centralize_angle( const double ival)
{
double rval = fmod( ival, twopi);
if( rval > pi)
rval -= twopi;
else if( rval < - pi)
rval += twopi;
return( rval);
}
#define MAX_KEPLER_ITER 10
int sxpx_posn_vel( const double xnode, const double a, const double ecc,
const double cosio, const double sinio,
const double xincl, const double omega,
const double xl, double *pos, double *vel)
{
/* Long period periodics */
const double axn = ecc*cos(omega);
double temp = 1/(a*(1.-ecc*ecc));
const double xlcof = .125 * a3ovk2 * sinio * (3+5*cosio)/ (1. + cosio);
const double aycof = 0.25 * a3ovk2 * sinio;
const double xll = temp*xlcof*axn;
const double aynl = temp*aycof;
const double xlt = xl+xll;
const double ayn = ecc*sin(omega)+aynl;
const double elsq = axn*axn+ayn*ayn;
const double capu = centralize_angle( xlt - xnode);
const double chicken_factor_on_eccentricity = 1.e-6;
double epw = capu;
double temp1, temp2;
double ecosE, esinE, pl, r;
double betal;
double u, sinu, cosu, sin2u, cos2u;
double rk, uk, xnodek, xinck;
double sinuk, cosuk, sinik, cosik, sinnok, cosnok, xmx, xmy;
double sinEPW, cosEPW;
double ux, uy, uz;
int i, rval = 0;
/* Dundee changes: items dependent on cosio get recomputed: */
const double cosio_squared = cosio * cosio;
const double x3thm1 = 3.0 * cosio_squared - 1.0;
const double sinio2 = 1.0 - cosio_squared;
const double x7thm1 = 7.0 * cosio_squared - 1.0;
/* Added 29 Mar 2003, modified 26 Sep 2006: extremely */
/* decayed satellites can end up "orbiting" within the */
/* earth. Eventually, the semimajor axis becomes zero, */
/* then negative. In that case, or if the orbit is near */
/* to parabolic, we zero the posn/vel and quit. If the */
/* object has a perigee or apogee indicating a crash, we */
/* just flag it. Revised 28 Oct 2006. */
if( a < 0.)
rval = SXPX_ERR_NEGATIVE_MAJOR_AXIS;
if( elsq > 1. - chicken_factor_on_eccentricity)
rval = SXPX_ERR_NEARLY_PARABOLIC;
for( i = 0; i < 3; i++)
{
pos[i] = 0.;
if( vel)
vel[i] = 0.;
}
if( rval)
return( rval);
if( a * (1. - ecc) < 1. && a * (1. + ecc) < 1.) /* entirely within earth */
rval = SXPX_WARN_ORBIT_WITHIN_EARTH; /* remember, e can be negative */
if( a * (1. - ecc) < 1. || a * (1. + ecc) < 1.) /* perigee within earth */
rval = SXPX_WARN_PERIGEE_WITHIN_EARTH;
/* Solve Kepler's' Equation */
for( i = 0; i < MAX_KEPLER_ITER; i++)
{
const double newton_raphson_epsilon = 1e-12;
double f, fdot, delta_epw;
int do_second_order_newton_raphson = 1;
sinEPW = sin( epw);
cosEPW = cos( epw);
ecosE = axn * cosEPW + ayn * sinEPW;
esinE = axn * sinEPW - ayn * cosEPW;
f = capu - epw + esinE;
if (fabs(f) < newton_raphson_epsilon) break;
fdot = 1. - ecosE;
delta_epw = f / fdot;
if( !i)
{
const double max_newton_raphson = 1.25 * fabs( ecc);
do_second_order_newton_raphson = 0;
if( delta_epw > max_newton_raphson)
delta_epw = max_newton_raphson;
else if( delta_epw < -max_newton_raphson)
delta_epw = -max_newton_raphson;
else
do_second_order_newton_raphson = 1;
}
if( do_second_order_newton_raphson)
delta_epw = f / (fdot + 0.5*esinE*delta_epw);
/* f/(fdot - 0.5*fdotdot * f / fdot) */
epw += delta_epw;
}
if( i == MAX_KEPLER_ITER)
return( SXPX_ERR_CONVERGENCE_FAIL);
/* Short period preliminary quantities */
temp = 1-elsq;
pl = a*temp;
r = a*(1-ecosE);
temp2 = a / r;
betal = sqrt(temp);
temp = esinE/(1+betal);
cosu = temp2 * (cosEPW - axn + ayn * temp);
sinu = temp2 * (sinEPW - ayn - axn * temp);
u = atan2( sinu, cosu);
sin2u = 2*sinu*cosu;
cos2u = 2*cosu*cosu-1;
temp1 = ck2 / pl;
temp2 = temp1 / pl;
/* Update for short periodics */
rk = r*(1-1.5*temp2*betal*x3thm1)+0.5*temp1*sinio2*cos2u;
uk = u-0.25*temp2*x7thm1*sin2u;
xnodek = xnode+1.5*temp2*cosio*sin2u;
xinck = xincl+1.5*temp2*cosio*sinio*cos2u;
/* Orientation vectors */
sinuk = sin(uk);
cosuk = cos(uk);
sinik = sin(xinck);
cosik = cos(xinck);
sinnok = sin(xnodek);
cosnok = cos(xnodek);
xmx = -sinnok*cosik;
xmy = cosnok*cosik;
ux = xmx*sinuk+cosnok*cosuk;
uy = xmy*sinuk+sinnok*cosuk;
uz = sinik*sinuk;
/* Position and velocity */
pos[0] = rk * ux * earth_radius_in_km;
pos[1] = rk * uy * earth_radius_in_km;
pos[2] = rk * uz * earth_radius_in_km;
if( vel)
{
const double rdot = xke * sqrt(a) * esinE / r;
const double rfdot = xke * sqrt(pl) / r;
const double xn = xke / (a * sqrt(a));
const double rdotk = rdot - xn * temp1 * sinio2 * sin2u;
const double rfdotk = rfdot + xn * temp1 * (sinio2 * cos2u + 1.5 * x3thm1);
const double vx = xmx * cosuk - cosnok * sinuk;
const double vy = xmy * cosuk - sinnok * sinuk;
const double vz = sinik*cosuk;
vel[0] = (rdotk * ux + rfdotk * vx) * earth_radius_in_km;
vel[1] = (rdotk * uy + rfdotk * vy) * earth_radius_in_km;
vel[2] = (rdotk * uz + rfdotk * vz) * earth_radius_in_km;
}
return( rval);
} /*SGP4*/