forked from wb2osz/direwolf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemod_psk.c
857 lines (664 loc) · 24.9 KB
/
demod_psk.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
//
// This file is part of Dire Wolf, an amateur radio packet TNC.
//
// Copyright (C) 2016 John Langner, WB2OSZ
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
//#define DEBUG1 1 /* display debugging info */
//#define DEBUG3 1 /* print carrier detect changes. */
//#define DEBUG4 1 /* capture PSK demodulator output to log files */
/*------------------------------------------------------------------
*
* Module: demod_psk.c
*
* Purpose: Demodulator for Phase Shift Keying (PSK).
*
* This is my initial attempt at implementing a 2400 bps mode.
* The MFJ-2400 & AEA PK232-2400 used V.26 / Bell 201 so I will follow that precedent.
*
*
* Input: Audio samples from either a file or the "sound card."
*
* Outputs: Calls hdlc_rec_bit() for each bit demodulated.
*
* Current Status: New for Version 1.4.
*
* Don't know if this is correct and/or compatible with
* other implementations.
* There is a lot of stuff going on here with phase
* shifting, gray code, bit order for the dibit, NRZI and
* bit-stuffing for HDLC. Plenty of opportunity for
* misinterpreting a protocol spec or just stupid mistakes.
*
* References: MFJ-2400 Product description and manual:
*
* http://www.mfjenterprises.com/Product.php?productid=MFJ-2400
* http://www.mfjenterprises.com/Downloads/index.php?productid=MFJ-2400&filename=MFJ-2400.pdf&company=mfj
*
* AEA had a 2400 bps packet modem, PK232-2400.
*
* http://www.repeater-builder.com/aea/pk232/pk232-2400-baud-dpsk-modem.pdf
*
* There was also a Kantronics KPC-2400 that had 2400 bps.
*
* http://www.brazoriacountyares.org/winlink-collection/TNC%20manuals/Kantronics/[email protected]
*
*
* The MFJ and AEA both use the EXAR XR-2123 PSK modem chip.
* The Kantronics has a P423 ???
*
* Can't find the chip specs on the EXAR website so Google it.
*
* http://www.komponenten.es.aau.dk/fileadmin/komponenten/Data_Sheet/Linear/XR2123.pdf
*
* The XR-2123 implements the V.26 / Bell 201 standard:
*
* https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-V.26-198811-I!!PDF-E&type=items
* https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-V.26bis-198811-I!!PDF-E&type=items
* https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-V.26ter-198811-I!!PDF-E&type=items
*
* "bis" and "ter" are from Latin for second and third.
* I used the "ter" version which has phase shifts of 0, 90, 180, and 270 degrees.
*
* There are other references to an alternative B which uses other multiples of 45.
* The XR-2123 data sheet mentions only multiples of 90. That's what I went with.
*
* The XR-2123 does not perform the scrambling as specified in V.26 so I wonder if
* the vendors implemented it in software or just left it out.
* I left out scrambling for now. Eventually, I'd like to get my hands on an old
* 2400 bps TNC for compatibility testing.
*
* After getting QPSK working, it was not much more effort to add V.27 with 8 phases.
*
* https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-V.27bis-198811-I!!PDF-E&type=items
* https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-V.27ter-198811-I!!PDF-E&type=items
*
*---------------------------------------------------------------*/
#include "direwolf.h"
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <unistd.h>
#include <sys/stat.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#include "audio.h"
#include "tune.h"
#include "fsk_demod_state.h"
#include "fsk_gen_filter.h"
#include "hdlc_rec.h"
#include "textcolor.h"
#include "demod_psk.h"
#include "dsp.h"
/* Add sample to buffer and shift the rest down. */
__attribute__((hot)) __attribute__((always_inline))
static inline void push_sample (float val, float *buff, int size)
{
memmove(buff+1,buff,(size-1)*sizeof(float));
buff[0] = val;
}
/* FIR filter kernel. */
__attribute__((hot)) __attribute__((always_inline))
static inline float convolve (const float *__restrict__ data, const float *__restrict__ filter, int filter_size)
{
float sum = 0.0;
int j;
for (j=0; j<filter_size; j++) {
sum += filter[j] * data[j];
}
return (sum);
}
/* Might replace this with faster, lower precision version someday. */
static inline float my_atan2f (float y, float x)
{
if ( y == 0 && x == 0) return (0.0); // different atan2 implementations behave differently.
return (atan2f(y,x));
}
/*------------------------------------------------------------------
*
* Name: demod_psk_init
*
* Purpose: Initialization for an psk demodulator.
* Select appropriate parameters and set up filters.
*
* Inputs: modem_type - MODEM_QPSK or MODEM_8PSK.
*
* samples_per_sec - Audio sample rate.
*
* bps - Bits per second.
* Should be 2400 for V.26 but we don't enforce it.
* The carrier frequency will be proportional.
*
* profile - Select different variations. For QPSK:
*
* P - Using self-correlation technique.
* Q - Same preceded by bandpass filter.
* R - Using local oscillator to derive phase.
* S - Same with bandpass filter.
*
* For 8-PSK:
*
* T, U, V, W same as above.
*
* D - Pointer to demodulator state for given channel.
*
* Outputs: D->ms_filter_size
*
* Returns: None.
*
* Bugs: This doesn't do much error checking so don't give it
* anything crazy.
*
*----------------------------------------------------------------*/
void demod_psk_init (enum modem_t modem_type, int samples_per_sec, int bps, char profile, struct demodulator_state_s *D)
{
int correct_baud; // baud is not same as bits/sec here!
int carrier_freq;
int j;
memset (D, 0, sizeof(struct demodulator_state_s));
D->modem_type = modem_type;
D->num_slicers = 1; // Haven't thought about this yet. Is it even applicable?
#ifdef TUNE_PROFILE
profile = TUNE_PROFILE;
#endif
if (modem_type == MODEM_QPSK) {
correct_baud = bps / 2;
// Originally I thought of scaling it to the data rate,
// e.g. 2400 bps -> 1800 Hz, but decided to make it a
// constant since it is the same for V.26 and V.27.
carrier_freq = 1800;
#if DEBUG1
dw_printf ("demod_psk_init QPSK (sample rate=%d, bps=%d, baud=%d, carrier=%d, profile=%c\n",
samples_per_sec, bps, correct_baud, carrier_freq, profile);
#endif
switch (toupper(profile)) {
case 'P': /* Self correlation technique. */
D->use_prefilter = 0; /* No bandpass filter. */
D->lpf_baud = 0.60;
D->lp_filter_len_bits = 39. * 1200. / 44100.;
D->lp_window = BP_WINDOW_COSINE;
D->pll_locked_inertia = 0.95;
D->pll_searching_inertia = 0.50;
break;
case 'Q': /* Self correlation technique. */
D->use_prefilter = 1; /* Add a bandpass filter. */
D->prefilter_baud = 1.3;
D->pre_filter_len_bits = 55. * 1200. / 44100.;
D->pre_window = BP_WINDOW_COSINE;
D->lpf_baud = 0.60;
D->lp_filter_len_bits = 39. * 1200. / 44100.;
D->lp_window = BP_WINDOW_COSINE;
D->pll_locked_inertia = 0.87;
D->pll_searching_inertia = 0.50;
break;
default:
text_color_set (DW_COLOR_ERROR);
dw_printf ("Invalid demodulator profile %c for v.26 QPSK. Valid choices are P, Q, R, S. Using default.\n", profile);
// fall thru.
case 'R': /* Mix with local oscillator. */
D->psk_use_lo = 1;
D->use_prefilter = 0; /* No bandpass filter. */
D->lpf_baud = 0.70;
D->lp_filter_len_bits = 37. * 1200. / 44100.;
D->lp_window = BP_WINDOW_TRUNCATED;
D->pll_locked_inertia = 0.925;
D->pll_searching_inertia = 0.50;
break;
case 'S': /* Mix with local oscillator. */
D->psk_use_lo = 1;
D->use_prefilter = 1; /* Add a bandpass filter. */
D->prefilter_baud = 0.55;
D->pre_filter_len_bits = 74. * 1200. / 44100.;
D->pre_window = BP_WINDOW_FLATTOP;
D->lpf_baud = 0.60;
D->lp_filter_len_bits = 39. * 1200. / 44100.;
D->lp_window = BP_WINDOW_COSINE;
D->pll_locked_inertia = 0.925;
D->pll_searching_inertia = 0.50;
break;
}
D->ms_filter_len_bits = 1.25; // Delay line > 13/12 * symbol period
D->coffs = (int) round( (11.f / 12.f) * (float)samples_per_sec / (float)correct_baud );
D->boffs = (int) round( (float)samples_per_sec / (float)correct_baud );
D->soffs = (int) round( (13.f / 12.f) * (float)samples_per_sec / (float)correct_baud );
}
else {
correct_baud = bps / 3;
carrier_freq = 1800;
#if DEBUG1
dw_printf ("demod_psk_init 8-PSK (sample rate=%d, bps=%d, baud=%d, carrier=%d, profile=%c\n",
samples_per_sec, bps, correct_baud, carrier_freq, profile);
#endif
switch (toupper(profile)) {
case 'T': /* Self correlation technique. */
D->use_prefilter = 0; /* No bandpass filter. */
D->lpf_baud = 1.15;
D->lp_filter_len_bits = 32. * 1200. / 44100.;
D->lp_window = BP_WINDOW_COSINE;
D->pll_locked_inertia = 0.95;
D->pll_searching_inertia = 0.50;
break;
case 'U': /* Self correlation technique. */
D->use_prefilter = 1; /* Add a bandpass filter. */
D->prefilter_baud = 0.9;
D->pre_filter_len_bits = 21. * 1200. / 44100.;
D->pre_window = BP_WINDOW_FLATTOP;
D->lpf_baud = 1.15;
D->lp_filter_len_bits = 32. * 1200. / 44100.;
D->lp_window = BP_WINDOW_COSINE;
D->pll_locked_inertia = 0.87;
D->pll_searching_inertia = 0.50;
break;
default:
text_color_set (DW_COLOR_ERROR);
dw_printf ("Invalid demodulator profile %c for v.27 8PSK. Valid choices are T, U, V, W. Using default.\n", profile);
// fall thru.
case 'V': /* Mix with local oscillator. */
D->psk_use_lo = 1;
D->use_prefilter = 0; /* No bandpass filter. */
D->lpf_baud = 0.85;
D->lp_filter_len_bits = 31. * 1200. / 44100.;
D->lp_window = BP_WINDOW_COSINE;
D->pll_locked_inertia = 0.925;
D->pll_searching_inertia = 0.50;
break;
case 'W': /* Mix with local oscillator. */
D->psk_use_lo = 1;
D->use_prefilter = 1; /* Add a bandpass filter. */
D->prefilter_baud = 0.85;
D->pre_filter_len_bits = 31. * 1200. / 44100.;
D->pre_window = BP_WINDOW_COSINE;
D->lpf_baud = 0.85;
D->lp_filter_len_bits = 31. * 1200. / 44100.;
D->lp_window = BP_WINDOW_COSINE;
D->pll_locked_inertia = 0.925;
D->pll_searching_inertia = 0.50;
break;
}
D->ms_filter_len_bits = 1.25; // Delay line > 10/9 * symbol period
D->coffs = (int) round( (8.f / 9.f) * (float)samples_per_sec / (float)correct_baud );
D->boffs = (int) round( (float)samples_per_sec / (float)correct_baud );
D->soffs = (int) round( (10.f / 9.f) * (float)samples_per_sec / (float)correct_baud );
}
if (D->psk_use_lo) {
D->lo_step = (int) round( 256. * 256. * 256. * 256. * carrier_freq / (double)samples_per_sec);
assert (MAX_FILTER_SIZE >= 256);
for (j = 0; j < 256; j++) {
D->m_sin_table[j] = sinf(2.f * (float)M_PI * j / 256.f);
}
}
#ifdef TUNE_PRE_BAUD
D->prefilter_baud = TUNE_PRE_BAUD;
#endif
#ifdef TUNE_PRE_WINDOW
D->pre_window = TUNE_PRE_WINDOW;
#endif
#ifdef TUNE_LPF_BAUD
D->lpf_baud = TUNE_LPF_BAUD;
#endif
#ifdef TUNE_LP_WINDOW
D->lp_window = TUNE_LP_WINDOW;
#endif
#ifdef TUNE_HYST
D->hysteresis = TUNE_HYST;
#endif
#if defined(TUNE_PLL_SEARCHING)
D->pll_searching_inertia = TUNE_PLL_SEARCHING;
#endif
#if defined(TUNE_PLL_LOCKED)
D->pll_locked_inertia = TUNE_PLL_LOCKED;
#endif
/*
* Calculate constants used for timing.
* The audio sample rate must be at least a few times the data rate.
*/
D->pll_step_per_sample = (int) round((TICKS_PER_PLL_CYCLE * (double)correct_baud) / ((double)samples_per_sec));
/*
* Convert number of symbol times to number of taps.
*/
D->pre_filter_size = (int) round( D->pre_filter_len_bits * (float)samples_per_sec / (float)correct_baud );
D->ms_filter_size = (int) round( D->ms_filter_len_bits * (float)samples_per_sec / (float)correct_baud );
D->lp_filter_size = (int) round( D->lp_filter_len_bits * (float)samples_per_sec / (float)correct_baud );
#ifdef TUNE_PRE_FILTER_SIZE
D->pre_filter_size = TUNE_PRE_FILTER_SIZE;
#endif
#ifdef TUNE_LP_FILTER_SIZE
D->lp_filter_size = TUNE_LP_FILTER_SIZE;
#endif
if (D->pre_filter_size > MAX_FILTER_SIZE)
{
text_color_set (DW_COLOR_ERROR);
dw_printf ("Calculated filter size of %d is too large.\n", D->pre_filter_size);
dw_printf ("Decrease the audio sample rate or increase the baud rate or\n");
dw_printf ("recompile the application with MAX_FILTER_SIZE larger than %d.\n",
MAX_FILTER_SIZE);
exit (1);
}
if (D->ms_filter_size > MAX_FILTER_SIZE)
{
text_color_set (DW_COLOR_ERROR);
dw_printf ("Calculated filter size of %d is too large.\n", D->ms_filter_size);
dw_printf ("Decrease the audio sample rate or increase the baud rate or\n");
dw_printf ("recompile the application with MAX_FILTER_SIZE larger than %d.\n",
MAX_FILTER_SIZE);
exit (1);
}
if (D->lp_filter_size > MAX_FILTER_SIZE)
{
text_color_set (DW_COLOR_ERROR);
dw_printf ("Calculated filter size of %d is too large.\n", D->pre_filter_size);
dw_printf ("Decrease the audio sample rate or increase the baud rate or\n");
dw_printf ("recompile the application with MAX_FILTER_SIZE larger than %d.\n",
MAX_FILTER_SIZE);
exit (1);
}
/*
* Optionally apply a bandpass ("pre") filter to attenuate
* frequencies outside the range of interest.
*/
if (D->use_prefilter) {
float f1, f2;
f1 = carrier_freq - D->prefilter_baud * correct_baud;
f2 = carrier_freq + D->prefilter_baud * correct_baud;
#if 0
text_color_set(DW_COLOR_DEBUG);
dw_printf ("Generating prefilter %.0f to %.0f Hz.\n", (double)f1, (double)f2);
#endif
if (f1 <= 0) {
text_color_set (DW_COLOR_ERROR);
dw_printf ("Prefilter of %.0f to %.0f Hz doesn't make sense.\n", (double)f1, (double)f2);
f1 = 10;
}
f1 = f1 / (float)samples_per_sec;
f2 = f2 / (float)samples_per_sec;
gen_bandpass (f1, f2, D->pre_filter, D->pre_filter_size, D->pre_window);
}
/*
* Now the lowpass filter.
*/
float fc = correct_baud * D->lpf_baud / (float)samples_per_sec;
gen_lowpass (fc, D->lp_filter, D->lp_filter_size, D->lp_window);
/*
* No point in having multiple numbers for signal level.
*/
D->alevel_mark_peak = -1;
D->alevel_space_peak = -1;
} /* demod_psk_init */
/*-------------------------------------------------------------------
*
* Name: demod_psk_process_sample
*
* Purpose: (1) Demodulate the psk signal into I & Q components.
* (2) Recover clock and sample data at the right time.
* (3) Produce two bits per symbol based on phase change from previous.
*
* Inputs: chan - Audio channel. 0 for left, 1 for right.
* subchan - modem of the channel.
* sam - One sample of audio.
* Should be in range of -32768 .. 32767.
*
* Outputs: For each recovered data bit, we call:
*
* hdlc_rec (channel, demodulated_bit);
*
* to decode HDLC frames from the stream of bits.
*
* Returns: None
*
* Descripion: All the literature, that I could find, described mixing
* with a local oscillator. First we multiply the input by
* cos and sin then low pass filter each. This gives us
* correlation to the different phases. The signs of these two
* results produces two data bits per symbol period.
*
* An 1800 Hz local oscillator was derived from the 1200 Hz
* PLL used to sample the data.
* This worked wonderfully for the ideal condition where
* we start off with the proper phase and all the timing
* is perfect. However, when random delays were added
* before the frame, the PLL would lock on only about
* half the time.
*
* Late one night, it dawned on me that there is no
* need for a local oscillator (LO) at the carrier frequency.
* Simply correlate the signal with the previous symbol,
* phase shifted by + and - 45 degrees.
* The code is much simpler and very reliable.
*
* Later, I realized it was not necessary to synchronize the LO
* because we only care about the phase shift between symbols.
*
* This works better under noisy conditions because we are
* including the noise from only the current symbol and not
* the previous one.
*
* Finally, once we know how to distinguish 4 different phases,
* it is not much effort to use 8 phases to double the bit rate.
*
*--------------------------------------------------------------------*/
inline static void nudge_pll (int chan, int subchan, int slice, int demod_bits, struct demodulator_state_s *D);
__attribute__((hot))
void demod_psk_process_sample (int chan, int subchan, int sam, struct demodulator_state_s *D)
{
float fsam;
float sam_x_cos, sam_x_sin;
float I, Q;
int demod_phase_shift; // Phase shift relative to previous symbol.
// range 0-3, 1 unit for each 90 degrees.
int slice = 0;
#if DEBUG4
static FILE *demod_log_fp = NULL;
static int log_file_seq = 0; /* Part of log file name */
#endif
assert (chan >= 0 && chan < MAX_CHANS);
assert (subchan >= 0 && subchan < MAX_SUBCHANS);
/* Scale to nice number for plotting during debug. */
fsam = sam / 16384.0f;
/*
* Optional bandpass filter before the phase detector.
*/
if (D->use_prefilter) {
push_sample (fsam, D->raw_cb, D->pre_filter_size);
fsam = convolve (D->raw_cb, D->pre_filter, D->pre_filter_size);
}
if (D->psk_use_lo) {
float a, delta;
int id;
/*
* Mix with local oscillator to obtain phase.
* The absolute phase doesn't matter.
* We are just concerned with the change since the previous symbol.
*/
sam_x_cos = fsam * D->m_sin_table[((D->lo_phase >> 24) + 64) & 0xff];
sam_x_sin = fsam * D->m_sin_table[(D->lo_phase >> 24) & 0xff];
push_sample (sam_x_cos, D->m_amp_cb, D->lp_filter_size);
I = convolve (D->m_amp_cb, D->lp_filter, D->lp_filter_size);
push_sample (sam_x_sin, D->s_amp_cb, D->lp_filter_size);
Q = convolve (D->s_amp_cb, D->lp_filter, D->lp_filter_size);
a = my_atan2f(I,Q);
push_sample (a, D->ms_in_cb, D->ms_filter_size);
delta = a - D->ms_in_cb[D->boffs];
/* 256 units/cycle makes modulo processing easier. */
/* Make sure it is positive before truncating to integer. */
id = ((int)((delta / (2.f * (float)M_PI) + 1.f) * 256.f)) & 0xff;
if (D->modem_type == MODEM_QPSK) {
demod_phase_shift = ((id + 32) >> 6) & 0x3;
}
else {
demod_phase_shift = ((id + 16) >> 5) & 0x7;
}
nudge_pll (chan, subchan, slice, demod_phase_shift, D);
D->lo_phase += D->lo_step;
}
else {
/*
* Correlate with previous symbol. We are looking for the phase shift.
*/
push_sample (fsam, D->ms_in_cb, D->ms_filter_size);
sam_x_cos = fsam * D->ms_in_cb[D->coffs];
sam_x_sin = fsam * D->ms_in_cb[D->soffs];
push_sample (sam_x_cos, D->m_amp_cb, D->lp_filter_size);
I = convolve (D->m_amp_cb, D->lp_filter, D->lp_filter_size);
push_sample (sam_x_sin, D->s_amp_cb, D->lp_filter_size);
Q = convolve (D->s_amp_cb, D->lp_filter, D->lp_filter_size);
if (D->modem_type == MODEM_QPSK) {
#if 1 // Speed up special case.
if (I > 0) {
if (Q > 0)
demod_phase_shift = 0; /* 0 to 90 degrees, etc. */
else
demod_phase_shift = 1;
}
else {
if (Q > 0)
demod_phase_shift = 3;
else
demod_phase_shift = 2;
}
#else
a = my_atan2f(I,Q);
int id = ((int)((a / (2.f * (float)M_PI) + 1.f) * 256.f)) & 0xff;
// 128 compensates for 180 degree phase shift due
// to 1 1/2 carrier cycles per symbol period.
demod_phase_shift = ((id + 128) >> 6) & 0x3;
#endif
}
else {
float a;
int idelta;
a = my_atan2f(I,Q);
idelta = ((int)((a / (2.f * (float)M_PI) + 1.f) * 256.f)) & 0xff;
// 32 (90 degrees) compensates for 1800 carrier vs. 1800 baud.
// 16 is to set threshold between constellation points.
demod_phase_shift = ((idelta - 32 - 16) >> 5) & 0x7;
}
nudge_pll (chan, subchan, slice, demod_phase_shift, D);
}
#if DEBUG4
if (chan == 0) {
if (1) {
//if (hdlc_rec_gathering (chan, subchan, slice)) {
char fname[30];
if (demod_log_fp == NULL) {
log_file_seq++;
snprintf (fname, sizeof(fname), "demod/%04d.csv", log_file_seq);
//if (log_file_seq == 1) mkdir ("demod", 0777);
if (log_file_seq == 1) mkdir ("demod");
demod_log_fp = fopen (fname, "w");
text_color_set(DW_COLOR_DEBUG);
dw_printf ("Starting demodulator log file %s\n", fname);
fprintf (demod_log_fp, "Audio, sin, cos, *cos, *sin, I, Q, phase, Clock\n");
}
fprintf (demod_log_fp, "%.3f, %.3f, %.3f, %.3f, %.3f, %.3f, %.2f, %.2f, %.2f\n",
fsam + 2,
- D->ms_in_cb[D->soffs] + 6,
- D->ms_in_cb[D->coffs] + 6,
sam_x_cos + 8,
sam_x_sin + 10,
2 * I + 12,
2 * Q + 12,
demod_phase_shift * 2. / 3. + 14.,
(D->slicer[slice].data_clock_pll & 0x80000000) ? .5 : .0);
fflush (demod_log_fp);
}
else {
if (demod_log_fp != NULL) {
fclose (demod_log_fp);
demod_log_fp = NULL;
}
}
}
#endif
} /* end demod_psk_process_sample */
static const int phase_to_gray_v26[4] = {0, 1, 3, 2};
static const int phase_to_gray_v27[8] = {1, 0, 2, 3, 7, 6, 4, 5};
__attribute__((hot))
inline static void nudge_pll (int chan, int subchan, int slice, int demod_bits, struct demodulator_state_s *D)
{
/*
* Finally, a PLL is used to sample near the centers of the data bits.
*
* D points to a demodulator for a channel/subchannel pair so we don't
* have to keep recalculating it.
*
* D->data_clock_pll is a SIGNED 32 bit variable.
* When it overflows from a large positive value to a negative value, we
* sample a data bit from the demodulated signal.
*
* Ideally, the the demodulated signal transitions should be near
* zero we we sample mid way between the transitions.
*
* Nudge the PLL by removing some small fraction from the value of
* data_clock_pll, pushing it closer to zero.
*
* This adjustment will never change the sign so it won't cause
* any erratic data bit sampling.
*
* If we adjust it too quickly, the clock will have too much jitter.
* If we adjust it too slowly, it will take too long to lock on to a new signal.
*
* Be a little more agressive about adjusting the PLL
* phase when searching for a signal.
* Don't change it as much when locked on to a signal.
*
* I don't think the optimal value will depend on the audio sample rate
* because this happens for each transition from the demodulator.
*/
D->slicer[slice].prev_d_c_pll = D->slicer[slice].data_clock_pll;
// Perform the add as unsigned to avoid signed overflow error.
D->slicer[slice].data_clock_pll = (signed)((unsigned)(D->slicer[slice].data_clock_pll) + (unsigned)(D->pll_step_per_sample));
if (D->slicer[slice].data_clock_pll < 0 && D->slicer[slice].prev_d_c_pll >= 0) {
/* Overflow of PLL counter. */
/* This is where we sample the data. */
if (D->modem_type == MODEM_QPSK) {
int gray = phase_to_gray_v26[ demod_bits ];
#if DEBUG4
text_color_set(DW_COLOR_DEBUG);
dw_printf ("a=%.2f deg, delta=%.2f deg, phaseshift=%d, bits= %d %d \n",
a * 360 / (2*M_PI), delta * 360 / (2*M_PI), demod_bits, (gray >> 1) & 1, gray & 1);
//dw_printf ("phaseshift=%d, bits= %d %d \n", demod_bits, (gray >> 1) & 1, gray & 1);
#endif
hdlc_rec_bit (chan, subchan, slice, (gray >> 1) & 1, 0, -1);
hdlc_rec_bit (chan, subchan, slice, gray & 1, 0, -1);
}
else {
int gray = phase_to_gray_v27[ demod_bits ];
hdlc_rec_bit (chan, subchan, slice, (gray >> 2) & 1, 0, -1);
hdlc_rec_bit (chan, subchan, slice, (gray >> 1) & 1, 0, -1);
hdlc_rec_bit (chan, subchan, slice, gray & 1, 0, -1);
}
}
/*
* If demodulated data has changed,
* Pull the PLL phase closer to zero.
* Use "floor" instead of simply casting so the sign won't flip.
* For example if we had -0.7 we want to end up with -1 rather than 0.
*/
// TODO: demod_9600 has an improved technique. Would it help us here?
if (demod_bits != D->slicer[slice].prev_demod_data) {
if (hdlc_rec_gathering (chan, subchan, slice)) {
D->slicer[slice].data_clock_pll = (int)floorf((float)(D->slicer[slice].data_clock_pll) * D->pll_locked_inertia);
}
else {
D->slicer[slice].data_clock_pll = (int)floorf((float)(D->slicer[slice].data_clock_pll) * D->pll_searching_inertia);
}
}
/*
* Remember demodulator output so we can compare next time.
*/
D->slicer[slice].prev_demod_data = demod_bits;
} /* end nudge_pll */
/* end demod_psk.c */