forked from wb2osz/direwolf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemod_9600.c
577 lines (461 loc) · 16.1 KB
/
demod_9600.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
//
// This file is part of Dire Wolf, an amateur radio packet TNC.
//
// Copyright (C) 2011, 2012, 2013, 2015 John Langner, WB2OSZ
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
//#define DEBUG4 1 /* capture 9600 output to log files */
/*------------------------------------------------------------------
*
* Module: demod_9600.c
*
* Purpose: Demodulator for scrambled baseband encoding.
*
* Input: Audio samples from either a file or the "sound card."
*
* Outputs: Calls hdlc_rec_bit() for each bit demodulated.
*
*---------------------------------------------------------------*/
#include "direwolf.h"
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <unistd.h>
#include <sys/stat.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#include "tune.h"
#include "fsk_demod_state.h"
#include "hdlc_rec.h"
#include "demod_9600.h"
#include "textcolor.h"
#include "dsp.h"
static float slice_point[MAX_SUBCHANS];
/* Add sample to buffer and shift the rest down. */
__attribute__((hot)) __attribute__((always_inline))
static inline void push_sample (float val, float *buff, int size)
{
memmove(buff+1,buff,(size-1)*sizeof(float));
buff[0] = val;
}
/* FIR filter kernel. */
__attribute__((hot)) __attribute__((always_inline))
static inline float convolve (const float *__restrict__ data, const float *__restrict__ filter, int filter_size)
{
float sum = 0.0f;
int j;
//#pragma GCC ivdep // ignored until gcc 4.9
for (j=0; j<filter_size; j++) {
sum += filter[j] * data[j];
}
return (sum);
}
/* Automatic gain control. */
/* Result should settle down to 1 unit peak to peak. i.e. -0.5 to +0.5 */
__attribute__((hot)) __attribute__((always_inline))
static inline float agc (float in, float fast_attack, float slow_decay, float *ppeak, float *pvalley)
{
if (in >= *ppeak) {
*ppeak = in * fast_attack + *ppeak * (1.0f - fast_attack);
}
else {
*ppeak = in * slow_decay + *ppeak * (1.0f - slow_decay);
}
if (in <= *pvalley) {
*pvalley = in * fast_attack + *pvalley * (1.0f - fast_attack);
}
else {
*pvalley = in * slow_decay + *pvalley * (1.0f - slow_decay);
}
if (*ppeak > *pvalley) {
return ((in - 0.5f * (*ppeak + *pvalley)) / (*ppeak - *pvalley));
}
return (0.0);
}
/*------------------------------------------------------------------
*
* Name: demod_9600_init
*
* Purpose: Initialize the 9600 (or higher) baud demodulator.
*
* Inputs: samples_per_sec - Number of samples per second.
* Might be upsampled in hopes of
* reducing the PLL jitter.
*
* baud - Data rate in bits per second.
*
* D - Address of demodulator state.
*
* Returns: None
*
*----------------------------------------------------------------*/
void demod_9600_init (int samples_per_sec, int baud, struct demodulator_state_s *D)
{
float fc;
int j;
memset (D, 0, sizeof(struct demodulator_state_s));
D->num_slicers = 1;
// Multiple profiles in future?
// switch (profile) {
// case 'J': // upsample x2 with filtering.
// case 'K': // upsample x3 with filtering.
// case 'L': // upsample x4 with filtering.
D->lp_filter_len_bits = 76 * 9600.0 / (44100.0 * 2.0);
// Works best with odd number in some tests. Even is better in others.
//D->lp_filter_size = ((int) (0.5f * ( D->lp_filter_len_bits * (float)samples_per_sec / (float)baud ))) * 2 + 1;
D->lp_filter_size = (int) (( D->lp_filter_len_bits * (float)samples_per_sec / baud) + 0.5f);
D->lp_window = BP_WINDOW_HAMMING;
D->lpf_baud = 0.62;
D->agc_fast_attack = 0.080;
D->agc_slow_decay = 0.00012;
D->pll_locked_inertia = 0.89;
D->pll_searching_inertia = 0.67;
// break;
// }
D->pll_step_per_sample =
(int) round(TICKS_PER_PLL_CYCLE * (double) baud / (double)samples_per_sec);
#ifdef TUNE_LP_WINDOW
D->lp_window = TUNE_LP_WINDOW;
#endif
#if TUNE_LP_FILTER_SIZE
D->lp_filter_size = TUNE_LP_FILTER_SIZE;
#endif
#ifdef TUNE_LPF_BAUD
D->lpf_baud = TUNE_LPF_BAUD;
#endif
#ifdef TUNE_AGC_FAST
D->agc_fast_attack = TUNE_AGC_FAST;
#endif
#ifdef TUNE_AGC_SLOW
D->agc_slow_decay = TUNE_AGC_SLOW;
#endif
#if defined(TUNE_PLL_LOCKED)
D->pll_locked_inertia = TUNE_PLL_LOCKED;
#endif
#if defined(TUNE_PLL_SEARCHING)
D->pll_searching_inertia = TUNE_PLL_SEARCHING;
#endif
fc = (float)baud * D->lpf_baud / (float)samples_per_sec;
//dw_printf ("demod_9600_init: call gen_lowpass(fc=%.2f, , size=%d, )\n", fc, D->lp_filter_size);
gen_lowpass (fc, D->lp_filter, D->lp_filter_size, D->lp_window);
/* Version 1.2: Experiment with different slicing levels. */
for (j = 0; j < MAX_SUBCHANS; j++) {
slice_point[j] = 0.02f * (j - 0.5f * (MAX_SUBCHANS-1));
//dw_printf ("slice_point[%d] = %+5.2f\n", j, slice_point[j]);
}
} /* end fsk_demod_init */
/*-------------------------------------------------------------------
*
* Name: demod_9600_process_sample
*
* Purpose: (1) Filter & slice the signal.
* (2) Descramble it.
* (2) Recover clock and data.
*
* Inputs: chan - Audio channel. 0 for left, 1 for right.
*
* sam - One sample of audio.
* Should be in range of -32768 .. 32767.
*
* Returns: None
*
* Descripion: "9600 baud" packet is FSK for an FM voice transceiver.
* By the time it gets here, it's really a baseband signal.
* At one extreme, we could have a 4800 Hz square wave.
* A the other extreme, we could go a considerable number
* of bit times without any transitions.
*
* The trick is to extract the digital data which has
* been distorted by going thru voice transceivers not
* intended to pass this sort of "audio" signal.
*
* Data is "scrambled" to reduce the amount of DC bias.
* The data stream must be unscrambled at the receiving end.
*
* We also have a digital phase locked loop (PLL)
* to recover the clock and pick out data bits at
* the proper rate.
*
* For each recovered data bit, we call:
*
* hdlc_rec (channel, demodulated_bit);
*
* to decode HDLC frames from the stream of bits.
*
* Future: This could be generalized by passing in the name
* of the function to be called for each bit recovered
* from the demodulator. For now, it's simply hard-coded.
*
* References: 9600 Baud Packet Radio Modem Design
* http://www.amsat.org/amsat/articles/g3ruh/109.html
*
* The KD2BD 9600 Baud Modem
* http://www.amsat.org/amsat/articles/kd2bd/9k6modem/
*
* 9600 Baud Packet Handbook
* ftp://ftp.tapr.org/general/9600baud/96man2x0.txt
*
*
*--------------------------------------------------------------------*/
inline static void nudge_pll (int chan, int subchan, int slice, float demod_out, struct demodulator_state_s *D);
__attribute__((hot))
void demod_9600_process_sample (int chan, int sam, struct demodulator_state_s *D)
{
float fsam;
float amp;
float demod_out;
#if DEBUG4
static FILE *demod_log_fp = NULL;
static int log_file_seq = 0; /* Part of log file name */
#endif
int subchan = 0;
int demod_data; /* Still scrambled. */
assert (chan >= 0 && chan < MAX_CHANS);
assert (subchan >= 0 && subchan < MAX_SUBCHANS);
/*
* Filters use last 'filter_size' samples.
*
* First push the older samples down.
*
* Finally, put the most recent at the beginning.
*
* Future project? Rather than shifting the samples,
* it might be faster to add another variable to keep
* track of the most recent sample and change the
* indexing in the later loops that multipy and add.
*/
/* Scale to nice number for convenience. */
/* Consistent with the AFSK demodulator, we'd like to use */
/* only half of the dynamic range to have some headroom. */
/* i.e. input range +-16k becomes +-1 here and is */
/* displayed in the heard line as audio level 100. */
fsam = sam / 16384.0;
#if defined(TUNE_ZEROSTUFF) && TUNE_ZEROSTUFF == 0
// experiment - no filtering.
amp = fsam;
#else
push_sample (fsam, D->raw_cb, D->lp_filter_size);
/*
* Low pass filter to reduce noise yet pass the data.
*/
amp = convolve (D->raw_cb, D->lp_filter, D->lp_filter_size);
#endif
/*
* Version 1.2: Capture the post-filtering amplitude for display.
* This is similar to the AGC without the normalization step.
* We want decay to be substantially slower to get a longer
* range idea of the received audio.
* For AFSK, we keep mark and space amplitudes.
* Here we keep + and - peaks because there could be a DC bias.
*/
// TODO: probably no need for this. Just use D->m_peak, D->m_valley
if (amp >= D->alevel_mark_peak) {
D->alevel_mark_peak = amp * D->quick_attack + D->alevel_mark_peak * (1.0f - D->quick_attack);
}
else {
D->alevel_mark_peak = amp * D->sluggish_decay + D->alevel_mark_peak * (1.0f - D->sluggish_decay);
}
if (amp <= D->alevel_space_peak) {
D->alevel_space_peak = amp * D->quick_attack + D->alevel_space_peak * (1.0f - D->quick_attack);
}
else {
D->alevel_space_peak = amp * D->sluggish_decay + D->alevel_space_peak * (1.0f - D->sluggish_decay);
}
/*
* The input level can vary greatly.
* More importantly, there could be a DC bias which we need to remove.
*
* Normalize the signal with automatic gain control (AGC).
* This works by looking at the minimum and maximum signal peaks
* and scaling the results to be roughly in the -1.0 to +1.0 range.
*/
demod_out = agc (amp, D->agc_fast_attack, D->agc_slow_decay, &(D->m_peak), &(D->m_valley));
// TODO: There is potential for multiple decoders with one filter.
//dw_printf ("peak=%.2f valley=%.2f amp=%.2f norm=%.2f\n", D->m_peak, D->m_valley, amp, norm);
if (D->num_slicers <= 1) {
/* Normal case of one demodulator to one HDLC decoder. */
/* Demodulator output is difference between response from two filters. */
/* AGC should generally keep this around -1 to +1 range. */
demod_data = demod_out > 0;
nudge_pll (chan, subchan, 0, demod_out, D);
}
else {
int slice;
/* Multiple slicers each feeding its own HDLC decoder. */
for (slice=0; slice<D->num_slicers; slice++) {
demod_data = demod_out - slice_point[slice] > 0;
nudge_pll (chan, subchan, slice, demod_out - slice_point[slice], D);
}
}
// demod_data is used only for debug out.
// suppress compiler warning about it not being used.
(void) demod_data;
#if DEBUG4
if (chan == 0) {
if (1) {
//if (hdlc_rec_gathering (chan, subchan, slice)) {
char fname[30];
int slice = 0;
if (demod_log_fp == NULL) {
log_file_seq++;
snprintf (fname, sizeof(fname), "demod/%04d.csv", log_file_seq);
//if (log_file_seq == 1) mkdir ("demod", 0777);
if (log_file_seq == 1) mkdir ("demod");
demod_log_fp = fopen (fname, "w");
text_color_set(DW_COLOR_DEBUG);
dw_printf ("Starting demodulator log file %s\n", fname);
fprintf (demod_log_fp, "Audio, Filtered, Max, Min, Normalized, Sliced, Clock\n");
}
fprintf (demod_log_fp, "%.3f, %.3f, %.3f, %.3f, %.3f, %d, %.2f\n",
fsam + 6,
amp + 4,
D->m_peak + 4,
D->m_valley + 4,
demod_out + 2,
demod_data + 2,
(D->slicer[slice].data_clock_pll & 0x80000000) ? .5 : .0);
fflush (demod_log_fp);
}
else {
if (demod_log_fp != NULL) {
fclose (demod_log_fp);
demod_log_fp = NULL;
}
}
}
#endif
} /* end demod_9600_process_sample */
/*-------------------------------------------------------------------
*
* Name: nudge_pll
*
* Purpose: Update the PLL state for each audio sample.
*
* (2) Descramble it.
* (2) Recover clock and data.
*
* Inputs: chan - Audio channel. 0 for left, 1 for right.
*
* subchan - Which demodulator. We could have several running in parallel.
*
* slice - Determines which Slicing level & HDLC decoder to use.
*
* demod_out_f - Demodulator output, possibly shifted by slicing level
* It will be compared with 0.0 to bit binary value out.
*
* D - Demodulator state for this channel / subchannel.
*
* Returns: None
*
* Descripton: A PLL is used to sample near the centers of the data bits.
*
* D->data_clock_pll is a SIGNED 32 bit variable.
* When it overflows from a large positive value to a negative value, we
* sample a data bit from the demodulated signal.
*
* Ideally, the the demodulated signal transitions should be near
* zero we we sample mid way between the transitions.
*
* Nudge the PLL by removing some small fraction from the value of
* data_clock_pll, pushing it closer to zero.
*
* This adjustment will never change the sign so it won't cause
* any erratic data bit sampling.
*
* If we adjust it too quickly, the clock will have too much jitter.
* If we adjust it too slowly, it will take too long to lock on to a new signal.
*
* I don't think the optimal value will depend on the audio sample rate
* because this happens for each transition from the demodulator.
*
* Version 1.4: Previously, we would always pull the PLL phase toward 0 after
* after a zero crossing was detetected. This adds extra jitter,
* especially when the ratio of audio sample rate to baud is low.
* Now, we interpolate between the two samples to get an estimate
* on when the zero crossing happened. The PLL is pulled toward
* this point.
*
* Results??? TBD
*
*--------------------------------------------------------------------*/
__attribute__((hot))
inline static void nudge_pll (int chan, int subchan, int slice, float demod_out_f, struct demodulator_state_s *D)
{
/*
*/
D->slicer[slice].prev_d_c_pll = D->slicer[slice].data_clock_pll;
// Perform the add as unsigned to avoid signed overflow error.
D->slicer[slice].data_clock_pll = (signed)((unsigned)(D->slicer[slice].data_clock_pll) + (unsigned)(D->pll_step_per_sample));
if ( D->slicer[slice].prev_d_c_pll > 1000000000 && D->slicer[slice].data_clock_pll < -1000000000) {
/* Overflow. Was large positive, wrapped around, now large negative. */
hdlc_rec_bit (chan, subchan, slice, demod_out_f > 0, 1, D->slicer[slice].lfsr);
}
/*
* Zero crossing?
*/
if ((D->slicer[slice].prev_demod_out_f < 0 && demod_out_f > 0) ||
(D->slicer[slice].prev_demod_out_f > 0 && demod_out_f < 0)) {
// Note: Test for this demodulator, not overall for channel.
float target = 0;
target = D->pll_step_per_sample * demod_out_f / (demod_out_f - D->slicer[slice].prev_demod_out_f);
if (hdlc_rec_gathering (chan, subchan, slice)) {
D->slicer[slice].data_clock_pll = (int)(D->slicer[slice].data_clock_pll * D->pll_locked_inertia + target * (1.0f - D->pll_locked_inertia) );
}
else {
D->slicer[slice].data_clock_pll = (int)(D->slicer[slice].data_clock_pll * D->pll_searching_inertia + target * (1.0f - D->pll_searching_inertia) );
}
}
#if DEBUG5
//if (chan == 0) {
if (hdlc_rec_gathering (chan,subchan,slice)) {
char fname[30];
if (demod_log_fp == NULL) {
seq++;
snprintf (fname, sizeof(fname), "demod96/%04d.csv", seq);
if (seq == 1) mkdir ("demod96"
#ifndef __WIN32__
, 0777
#endif
);
demod_log_fp = fopen (fname, "w");
text_color_set(DW_COLOR_DEBUG);
dw_printf ("Starting 9600 decoder log file %s\n", fname);
fprintf (demod_log_fp, "Audio, Peak, Valley, Demod, SData, Descram, Clock\n");
}
fprintf (demod_log_fp, "%.3f, %.3f, %.3f, %.3f, %.2f, %.2f, %.2f\n",
0.5f * fsam + 3.5,
0.5f * D->m_peak + 3.5,
0.5f * D->m_valley + 3.5,
0.5f * demod_out + 2.0,
demod_data ? 1.35 : 1.0,
descram ? .9 : .55,
(D->data_clock_pll & 0x80000000) ? .1 : .45);
}
else {
if (demod_log_fp != NULL) {
fclose (demod_log_fp);
demod_log_fp = NULL;
}
}
//}
#endif
/*
* Remember demodulator output (pre-descrambling) so we can compare next time
* for the DPLL sync.
*/
D->slicer[slice].prev_demod_out_f = demod_out_f;
} /* end nudge_pll */
/* end demod_9600.c */