Skip to content

write tutorial about cudf #18

Open
@haesleinhuepf

Description

@haesleinhuepf

A suggestion by @jni.
The google colab installation is tricky and on Windows it doesn't install. Thus, we might want to elaborate a bit one this.

Hints:

# intall miniconda
!wget -c https://repo.continuum.io/miniconda/Miniconda3-4.5.4-Linux-x86_64.sh
!chmod +x Miniconda3-4.5.4-Linux-x86_64.sh
!bash ./Miniconda3-4.5.4-Linux-x86_64.sh -b -f -p /usr/local

# install RAPIDS packages
!conda install -q -y --prefix /usr/local -c conda-forge \
  -c rapidsai-nightly/label/cuda10.0 -c nvidia/label/cuda10.0 \
  cudf cuml

# set environment vars
import sys, os, shutil
sys.path.append('/usr/local/lib/python3.6/site-packages/')
os.environ['NUMBAPRO_NVVM'] = '/usr/local/cuda/nvvm/lib64/libnvvm.so'
os.environ['NUMBAPRO_LIBDEVICE'] = '/usr/local/cuda/nvvm/libdevice/'

# copy .so files to current working dir
for fn in ['libcudf.so', 'librmm.so']:
  shutil.copy('/usr/local/lib/'+fn, os.getcwd())

Source: https://colab.research.google.com/github/ritchieng/deep-learning-wizard/blob/master/docs/machine_learning/gpu/rapids_cudf.ipynb#scrollTo=qZyMvAQp6iwB

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions