-
Notifications
You must be signed in to change notification settings - Fork 5
/
sim_to_train.py
executable file
·288 lines (266 loc) · 13 KB
/
sim_to_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#Authors : Maria-Anna Trapotsi, Layla Hosseini-Gerami and Lewis Mervin
#Emails : [email protected] and [email protected]
#Supervisor : Dr. A. Bender
#All rights reserved 2021
#Protein Target Prediction Tool trained on SARs from PubChem (Mined April 2021) and ChEMBL28
#Molecular Descriptors : 2048bit Morgan Binary Fingerprints (Rdkit) - ECFP4
#Dependencies : rdkit, sklearn, numpy
#libraries
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit import DataStructs
import cPickle
import zipfile
import bz2
import glob
import time
import os
import sys
import math
import numpy as np
from multiprocessing import Pool
import multiprocessing
multiprocessing.freeze_support()
from optparse import OptionParser
import json
def introMessage():
print '=============================================================================================='
print ' Authors: Maria-Anna Trapotsi, Layla Hosseini-Gerami and Lewis Mervin\n Email: [email protected], [email protected]\n Supervisor: Dr. A. Bender'
print ' Address: Centre For Molecular Informatics, Dept. Chemistry, Lensfield Road, Cambridge CB2 1EW'
print '==============================================================================================\n'
return
#optionparser options
parser = OptionParser()
parser.add_option('-f', dest='inf', help='Input smiles or sdf file (required)', metavar='FILE')
parser.add_option('-b', '--bioactivity', default=None, type=str, dest='bioactivity', help='Bioactivity threshold (can use multiple split by ",". E.g. "100,10"')
parser.add_option('-n', '--ncores', default=1, type=int, dest='ncores', help='No. cores (default: 1)')
parser.add_option('--organism', dest='organism', default=None, type=str, help='Organism filter (multiple can be specified using commas ",")')
parser.add_option('--orthologues', action='store_true', default=False, dest='ortho', help='Set to use orthologue bioactivity data in model generation')
parser.add_option('-o',dest='off',default=None,help='Optional output file name', metavar='FILE')
(options, args) = parser.parse_args()
#check smiles of sdf (if not quit)
def check_Input():
global options
extension = options.inf.split('.')[-1]
if extension not in ['smi','smiles','sdf']:
print ' Warning [-f]: File type not "smi", "smiles" or "sdf". Interpreting input as SMILES'
return extension
#Read Dictionary to filter any models with 0 actives
if os.name == 'nt':
sep = '\\'
else:
sep = '/'
no_ortho_dict = os.path.dirname(os.path.abspath(__file__)) + sep + 'dict_uniprot_2_actives.json'
ortho_dict = os.path.dirname(os.path.abspath(__file__)) + sep + 'dict_uniprot_2_actives_ortho.json'
if options.ortho == False:
with open(no_ortho_dict, 'r') as fp:
dict_uniprot_2_actives = json.load(fp)
if options.ortho == True:
with open(ortho_dict, 'r') as fp:
dict_uniprot_2_actives = json.load(fp)
#print(dict_uniprot_2_actives)
#calculate 2048bit morgan fingerprints, radius 2
def calcFingerprints(smiles):
m1 = Chem.MolFromSmiles(smiles)
fp = AllChem.GetMorganFingerprintAsBitVect(m1,2, nBits=2048)
return fp
#calculate fingerprints for chunked array of smiles
def arrayFP(inp):
outfp = []
outsmi = []
for i in inp:
try:
outfp.append(calcFingerprints(i))
outsmi.append(i)
except:
print 'SMILES Parse Error: ' + i
return outfp,outsmi
#import user query
def importQuery(in_file):
query = open(in_file).read().splitlines()
#collect IDs, if present
if len(query[0].split()) > 1:
ids = [line.split()[1] for line in query]
query = [line.split()[0] for line in query]
else:
ids = None
smiles_per_core = int(math.ceil(len(query) / N_cores)+1)
chunked_smiles = [query[x:x+smiles_per_core] for x in xrange(0, len(query), smiles_per_core)]
pool = Pool(processes=N_cores) # set up resources
jobs = pool.imap(arrayFP, chunked_smiles)
processed_fp = []
processed_smi = []
for i, result in enumerate(jobs):
processed_fp += result[0]
processed_smi += result[1]
pool.close()
pool.join()
#if IDs aren't present, use SMILES as IDs
if not ids:
ids = processed_smi
return processed_fp, processed_smi, ids
#get info for uniprots
#Change the function from v2 to v3 based on the location of information in columns of the file and also the 'sep' used in the file
def getUniprotInfo():
if os.name == 'nt': sep = '\\'
else: sep = '/'
if options.ortho == True:
model_info = [l.split('\t') for l in open(os.path.dirname(os.path.abspath(__file__)) + sep + 'classes_in_model_ortho.txt').read().splitlines()]
if options.ortho == False:
model_info = [l.split('\t') for l in open(os.path.dirname(os.path.abspath(__file__)) + sep + 'classes_in_model_no_ortho.txt').read().splitlines()]
return_dict = {l[0] : l[0:7] for l in model_info}
return return_dict
#sim worker
def doSimSearch(model_name):
if os.name == 'nt': sep = '\\'
else: sep = '/'
mod = model_name.split(sep)[-1].split('.')[0]
try:
if options.ortho == False:
with zipfile.ZipFile(os.path.dirname(os.path.abspath(__file__)) + sep + 'no_ortho/bioactivity_dataset' + sep + mod + '.smi.zip', 'r') as zfile:
#print(zfile)
comps = [i.split('\t') for i in zfile.open(mod + '.smi', 'r').read().splitlines()]
if options.ortho == True:
with zipfile.ZipFile(os.path.dirname(os.path.abspath(__file__)) + sep + 'ortho/bioactivity_dataset' + sep + mod + '.smi.zip', 'r') as zfile:
comps = [i.split('\t') for i in zfile.open(mod + '.smi', 'r').read().splitlines()]
except IOError: return
comps2 = []
afp = []
#select comps[1:], because in PIDGINv3 .smi files the first row is the header (change comps to comps[1:])
#comp[9], comp[10],comp[11] and comp[12] corresponds to the indication of activity in 100, 10, 1 and 0.1 bioactivity threshold respectively.
#comp[2] is the Compound ID and specify the comparison of query molecules only with actives from ChEMBL
if options.bioactivity == '0.1':
ind = 12
if options.bioactivity == '1':
ind = 11
if options.bioactivity == '100':
ind = 9
if options.bioactivity == '10':
ind = 10
for comp in comps[1:]:
#print(comps[0])
if comp[3]!="Smiles" and comp[ind]=='1' and comp[2].startswith('CHEMBL'):
try:
afp.append(calcFingerprints(comp[3]))
comps2.append(comp)
except: pass
ret = []
for i,fp in enumerate(querymatrix):
sims = DataStructs.BulkTanimotoSimilarity(fp,afp)
if len(sims) > 0:
idx = sims.index(max(sims))
ret.append([sims[idx], mod] + comps2[idx] + [smiles[i]])
else:
ret.append(["NaN","NaN"] + ["NaN"] + ["NaN"])
return ret
#prediction runner
def performSimSearch(models):
sims_results = []
pool = Pool(processes=N_cores, initializer=initPool, initargs=(querymatrix,smiles)) # set up resources
jobs = pool.imap_unordered(doSimSearch, models)
out_file2.write('Uniprot\tPref_Name\tGene ID\tTarget_Class\tOrganism\tPDB_ID\tDisGeNET_Diseases_0.06\t' + '\t'.join(map(str,smiles)) + '\n')
for i, result in enumerate(jobs):
percent = (float(i)/float(len(models)))*100 + 1
sys.stdout.write(' Calculating Sims for Query Molecules: %3d%%\r' % percent)
sys.stdout.flush()
if result is not None:
sims_results += result
try:
out_file2.write('\t'.join(map(str,model_info[result[0][1]])))
for sim in result:
out_file2.write('\t' + str(round(sim[0],3)))
except:
continue
out_file2.write('\n')
pool.close()
pool.join()
return sims_results
#initializer for the pool
def initPool(querymatrix_,smiles_):
global querymatrix, smiles
querymatrix = querymatrix_
smiles = smiles_
#main
if __name__ == '__main__':
if os.name == 'nt': sep = '\\'
else: sep = '/'
#input_name = sys.argv[1]
input_name=options.inf
#N_cores = int(sys.argv[2])
N_cores = int(options.ncores)
desired_organism = options.organism
introMessage()
print ' Calculating Near-Neighbors for ' + input_name
print ' Using ' + str(N_cores) + ' Cores'
if options.ortho == False:
models = [modelfile for modelfile in glob.glob(os.path.dirname(os.path.abspath(__file__)) + sep + 'no_ortho/bioactivity_dataset' + sep + '*.zip')]
if options.ortho == True:
models = [modelfile for modelfile in glob.glob(os.path.dirname(os.path.abspath(__file__)) + sep + 'ortho/bioactivity_dataset' + sep + '*.zip')]
if options.organism == None:
timestr = time.strftime('%Y%m%d-%H%M%S')
models_filtered=[]
for model_id in models:
model_uniprot = model_id.split('/')[-1].split('.')[0]
if options.bioactivity=='100':
index_val=0
if options.bioactivity=='10':
index_val=1
if options.bioactivity=='1':
index_val=2
if options.bioactivity=='0.1':
index_val=3
n_actives=dict_uniprot_2_actives[model_uniprot][index_val]
if n_actives>=1:
models_filtered.append(model_id)
models=models_filtered
model_info = getUniprotInfo()
if options.off:
output_name = options.off+'_similarity_details.txt'
output_name2 = options.off+'_similarity_matrix.txt'
else:
output_name = input_name + '_' + timestr + '_out_similarity_details.txt'
output_name2 = input_name + '_' + timestr + '_out_similarity_matrix.txt'
if options.organism is not None:
timestr = time.strftime('%Y%m%d-%H%M%S')
model_info = getUniprotInfo()
models = [mod for mod in models if model_info[mod.split(sep)[-1].split('.')[0]][4] == options.organism]
models_filtered=[]
for model_id in models:
model_uniprot = model_id.split('/')[-1].split('.')[0]
if options.bioactivity=='100':
index_val=0
if options.bioactivity=='10':
index_val=1
if options.bioactivity=='1':
index_val=2
if options.bioactivity=='0.1':
index_val=3
n_actives=dict_uniprot_2_actives[model_uniprot][index_val]
if n_actives>=1:
models_filtered.append(model_id)
models=models_filtered
if options.off:
output_name = options.off+'_similarity_details.txt'
output_name2 = options.off+'_similarity_matrix.txt'
else:
output_name = input_name + '_' + timestr +'_out_similarity_details' + '_'+options.organism.replace(' ', '_') + '.txt'
output_name2 = input_name + '_' + timestr + '_out_similarity_matrix' + '_'+options.organism.replace(' ', '_') + '.txt'
print ' Predicting for organism : ' + desired_organism
print ' Total Number of Classes : ' + str(len(models_filtered))
out_file = open(output_name, 'w')
out_file2 = open(output_name2, 'w')
querymatrix,smiles,ids = importQuery(input_name)
print ' Total Number of Query Molecules : ' + str(len(querymatrix))
sims_results = performSimSearch(models)
out_file.write('Uniprot\tPref_Name\tGene ID\tTarget_Class\tOrganism\tNear_Neighbor_ChEMBLID\tNear_Neighbor_Smiles\tNear_Neighbor_Bioactive_organism\tNear_Neighbor_conf_score\tNN_activity\tNN_Units\tInput_Compound\tSimilarity\n')
for row in sorted(sims_results,reverse=True):
try:
if row[6] in ['Active','active']:
out_file.write('\t'.join(map(str,model_info[row[1]][0:5]))+ '\t' + '\t'.join(map(str,row[4:6]))+'\t'+str(row[3])+'\t'+str(row[7])+'\t'+str(row[6])+'\t'+str(row[8])+'\t'+str(row[15])+'\t'+str(row[0])+ '\n')
else:
out_file.write('\t'.join(map(str,model_info[row[1]][0:5]))+ '\t' + '\t'.join(map(str,row[4:6]))+'\t'+str(row[3])+'\t'+str(row[6])+'\t'+str(row[9])+'\t'+str(row[7])+'\t'+str(row[15])+'\t'+str(row[0])+ '\n')
except:
continue
print '\n Wrote Results to: ' + output_name
print ' Wrote Results to: ' + output_name2
out_file.close()