forked from jvail/dairy.js
-
Notifications
You must be signed in to change notification settings - Fork 0
/
practice.py
114 lines (89 loc) · 4.44 KB
/
practice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import pulp as lp
# The Simplified Whiskas Model Python Formulation for the PuLP Modeller
# Authors: Antony Phillips, Dr Stuart Mitchell 2007
def simplified_whiskas():
# Create the 'prob' variable to contain the problem data
prob = lp.LpProblem("The Whiskas Problem",lp.LpMinimize)
# The 2 variables Beef and Chicken are created with a lower limit of zero
x1=lp.LpVariable("ChickenPercent",0,None,lp.LpInteger)
x2=lp.LpVariable("BeefPercent",0)
# The objective function is added to 'prob' first
prob += 0.013*x1 + 0.008*x2, "Total Cost of Ingredients per can"
# The five constraints are entered
prob += x1 + x2 == 100, "PercentagesSum"
prob += 0.100*x1 + 0.200*x2 >= 8.0, "ProteinRequirement"
prob += 0.080*x1 + 0.100*x2 >= 6.0, "FatRequirement"
prob += 0.001*x1 + 0.005*x2 <= 2.0, "FibreRequirement"
prob += 0.002*x1 + 0.005*x2 <= 0.4, "SaltRequirement"
# The problem data is written to an .lp file
prob.writeLP("WhiskasModel.lp")
# The problem is solved using PuLP's choice of Solver
prob.solve()
# The status of the solution is printed to the screen
print("Status:", lp.LpStatus[prob.status])
# Each of the variables is printed with it's resolved optimum value
for v in prob.variables():
print(v.name, "=", v.varValue)
# The optimised objective function value is printed to the screen
print("Total Cost of Ingredients per can = ", lp.value(prob.objective))
def full_whiskas():
# Creates a list of the Ingredients
Ingredients = ['CHICKEN', 'BEEF', 'MUTTON', 'RICE', 'WHEAT', 'GEL']
# A dictionary of the costs of each of the Ingredients is created
costs = {'CHICKEN': 0.013,
'BEEF': 0.008,
'MUTTON': 0.010,
'RICE': 0.002,
'WHEAT': 0.005,
'GEL': 0.001}
# A dictionary of the protein percent in each of the Ingredients is created
proteinPercent = {'CHICKEN': 0.100,
'BEEF': 0.200,
'MUTTON': 0.150,
'RICE': 0.000,
'WHEAT': 0.040,
'GEL': 0.000}
# A dictionary of the fat percent in each of the Ingredients is created
fatPercent = {'CHICKEN': 0.080,
'BEEF': 0.100,
'MUTTON': 0.110,
'RICE': 0.010,
'WHEAT': 0.010,
'GEL': 0.000}
# A dictionary of the fibre percent in each of the Ingredients is created
fibrePercent = {'CHICKEN': 0.001,
'BEEF': 0.005,
'MUTTON': 0.003,
'RICE': 0.100,
'WHEAT': 0.150,
'GEL': 0.000}
# A dictionary of the salt percent in each of the Ingredients is created
saltPercent = {'CHICKEN': 0.002,
'BEEF': 0.005,
'MUTTON': 0.007,
'RICE': 0.002,
'WHEAT': 0.008,
'GEL': 0.000}
# Create the 'prob' variable to contain the problem data
prob = lp.LpProblem("The Whiskas Problem", lp.LpMinimize)
# A dictionary called 'ingredient_vars' is created to contain the referenced Variables
ingredient_vars = lp.LpVariable.dicts("Ingr",Ingredients,0)
# The objective function is added to 'prob' first
prob += lp.lpSum([costs[i] * ingredient_vars[i] for i in Ingredients]), "Total Cost of Ingredients per can"
# The five constraints are added to 'prob'
prob += lp.lpSum([ingredient_vars[i] for i in Ingredients]) == 100, "PercentagesSum"
prob += lp.lpSum([proteinPercent[i] * ingredient_vars[i] for i in Ingredients]) >= 8.0, "ProteinRequirement"
prob += lp.lpSum([fatPercent[i] * ingredient_vars[i] for i in Ingredients]) >= 6.0, "FatRequirement"
prob += lp.lpSum([fibrePercent[i] * ingredient_vars[i] for i in Ingredients]) <= 2.0, "FibreRequirement"
prob += lp.lpSum([saltPercent[i] * ingredient_vars[i] for i in Ingredients]) <= 0.4, "SaltRequirement"
# The problem is solved using PuLP's choice of Solver
prob.solve()
# The status of the solution is printed to the screen
print("Status:", lp.LpStatus[prob.status])
# Each of the variables is printed with it's resolved optimum value
for v in prob.variables():
print(v.name, "=", v.varValue)
# The optimised objective function value is printed to the screen
print("Total Cost of Ingredients per can = ", lp.value(prob.objective))
simplified_whiskas()
full_whiskas()