Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding unemployment rate at a census tract level #135

Merged
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions cities/utils/cleaning_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@
)
from cities.utils.cleaning_scripts.clean_transport import clean_transport
from cities.utils.cleaning_scripts.clean_unemployment import clean_unemployment
from cities.utils.cleaning_scripts.clean_unemployment_ct import clean_unemployment_CT
from cities.utils.cleaning_scripts.clean_urbanicity_ct import clean_urbanicity_CT
from cities.utils.cleaning_scripts.clean_urbanicity_ma import clean_urbanicity_ma
from cities.utils.cleaning_scripts.clean_urbanization import clean_urbanization
Expand All @@ -41,6 +42,8 @@

# clean_health() lost of another 15-ish fips

clean_unemployment_CT()

clean_urbanicity_CT()

clean_population_CT()
Expand Down
22 changes: 22 additions & 0 deletions cities/utils/cleaning_scripts/clean_unemployment_ct.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
from cities.utils.clean_variable import VariableCleanerCT
from cities.utils.data_grabber import find_repo_root

root = find_repo_root()


def clean_unemployment_CT():
cleaner = VariableCleanerCT(
variable_name="unemployment_pre2020_CT",
path_to_raw_csv=f"{root}/data/raw/unemployment_pre2020_ct.csv",
year_or_category_column_label="Year",
time_interval="pre2020",
)
cleaner.clean_variable()

cleaner2 = VariableCleanerCT(
variable_name="unemployment_post2020_CT",
path_to_raw_csv=f"{root}/data/raw/unemployment_post2020_ct.csv",
year_or_category_column_label="Year",
time_interval="post2020",
)
cleaner2.clean_variable()
225 changes: 225 additions & 0 deletions cities/utils/scraping/scrape_unemployment_ct.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,225 @@
import numpy as np
import pandas as pd
import requests
from us import states

from cities.utils.data_grabber import find_repo_root

root = find_repo_root()

print("Warning: The process will take around 15min.")

# S2301_C04_001E Estimate!!Unemployment rate!!Population 16 years and over
variables = "NAME,S2301_C04_001E"
county_fips = "*" # all counties
tract = "*" # all tracts
api_key = "077d857d6c12d5b9b3aeafa07d2c1916ba12a86c"
# private api key required to access the data https://api.census.gov/data/key_signup.html
# year = 2022

interval = list(range(2010, 2023))
dfs = []

for year in interval:
for x in range(
0, len(states.STATES)
): # in this call it's not possible to use the '*' wildcard to access all states, so we need to iterate over all states
fips = states.STATES[x].fips

url = (
f"https://api.census.gov/data/{year}/acs/acs5/subject?get={variables}"
f"&for=tract:{tract}&in=state:{fips}&in=county:{county_fips}&key={api_key}"
)

response = requests.get(url)

assert (
response.status_code == 200
), "The data retrieval went wrong" # 200 means success

print(f"{fips} fips for year {year} done")

data = response.json()

df = pd.DataFrame(data[1:], columns=data[0])
df["Year"] = year # Add the year column

dfs.append(df)

combined_df = pd.concat(dfs, ignore_index=True)


unemployment_combined = combined_df.copy()

column_mapping = {"S2301_C04_001E": "Value"}

unemployment_combined.rename(columns=column_mapping, inplace=True)

state_abbreviations = {
"Alabama": "AL",
"Alaska": "AK",
"Arizona": "AZ",
"Arkansas": "AR",
"California": "CA",
"Colorado": "CO",
"Connecticut": "CT",
"Delaware": "DE",
"Florida": "FL",
"Georgia": "GA",
"Hawaii": "HI",
"Idaho": "ID",
"Illinois": "IL",
"Indiana": "IN",
"Iowa": "IA",
"Kansas": "KS",
"Kentucky": "KY",
"Louisiana": "LA",
"Maine": "ME",
"Maryland": "MD",
"Massachusetts": "MA",
"Michigan": "MI",
"Minnesota": "MN",
"Mississippi": "MS",
"Missouri": "MO",
"Montana": "MT",
"Nebraska": "NE",
"Nevada": "NV",
"New Hampshire": "NH",
"New Jersey": "NJ",
"New Mexico": "NM",
"New York": "NY",
"North Carolina": "NC",
"North Dakota": "ND",
"Ohio": "OH",
"Oklahoma": "OK",
"Oregon": "OR",
"Pennsylvania": "PA",
"Rhode Island": "RI",
"South Carolina": "SC",
"South Dakota": "SD",
"Tennessee": "TN",
"Texas": "TX",
"Utah": "UT",
"Vermont": "VT",
"Virginia": "VA",
"Washington": "WA",
"West Virginia": "WV",
"Wisconsin": "WI",
"Wyoming": "WY",
}

unemployment_combined["GeoFIPS"] = unemployment_combined.apply(
lambda row: f"{row['state']}{row['county']}{row['tract']}", axis=1
).astype(np.int64)

unemployment_combined.drop(["state", "county", "tract"], axis=1, inplace=True)


def parse_geo_name(name):
if ";" in name:
parts = name.split(";")
else:
parts = name.split(",")

if len(parts) >= 3:
county = parts[1].strip().replace(" County", "")
state_full = parts[2].strip()
state_abbr = state_abbreviations.get(state_full, state_full)
return f"{county}, {state_abbr} (CT)"
return "Unknown"


unemployment_combined["GeoName"] = (
unemployment_combined["NAME"].apply(parse_geo_name).astype(str)
)

assert (
unemployment_combined[unemployment_combined["GeoName"] == "Unknown"].shape[0] == 0
), "There are Unknown GeoNames"

unemployment_combined = unemployment_combined.drop(["NAME"], axis=1)

unemployment_combined.sort_values(by=["Year", "GeoFIPS", "GeoName"], inplace=True)
unemployment_combined = unemployment_combined[
["GeoFIPS", "GeoName", "Year", "Value"]
].reset_index(drop=True)

unemployment_combined_pre2020 = unemployment_combined[
unemployment_combined["Year"] < 2020
].reset_index(drop=True)
unemployment_combined_post2020 = unemployment_combined[
unemployment_combined["Year"] >= 2020
].reset_index(drop=True)


geo_counts = unemployment_combined_pre2020["GeoFIPS"].value_counts()
geo_in_all_years = geo_counts[geo_counts == geo_counts.max()].index.tolist()
unemployment_combined_pre2020_filtered = unemployment_combined_pre2020[
unemployment_combined_pre2020["GeoFIPS"].isin(geo_in_all_years)
]
missin_count = (
unemployment_combined_pre2020["GeoFIPS"].nunique()
- unemployment_combined_pre2020_filtered["GeoFIPS"].nunique()
)

print(f" {missin_count} GeoFIPS values were removed from the pre-2020 data")


geo_counts = unemployment_combined_post2020["GeoFIPS"].value_counts()
geo_in_all_years = geo_counts[geo_counts == geo_counts.max()].index.tolist()
unemployment_combined_post2020_filtered = unemployment_combined_post2020[
unemployment_combined_post2020["GeoFIPS"].isin(geo_in_all_years)
]
missin_count = (
unemployment_combined_post2020["GeoFIPS"].nunique()
- unemployment_combined_post2020_filtered["GeoFIPS"].nunique()
)

print(f" {missin_count} GeoFIPS values were removed from the post-2020 data")

unemployment_combined_post2020_filtered_wide = (
unemployment_combined_post2020_filtered.pivot(
index=["GeoFIPS", "GeoName"], columns="Year", values="Value"
)
)
unemployment_combined_post2020_filtered_wide = (
unemployment_combined_post2020_filtered_wide.reset_index()
)
unemployment_combined_post2020_filtered_wide.columns.name = None

unemployment_combined_pre2020_filtered_wide = (
unemployment_combined_pre2020_filtered.pivot(
index=["GeoFIPS", "GeoName"], columns="Year", values="Value"
)
)
unemployment_combined_pre2020_filtered_wide = (
unemployment_combined_pre2020_filtered_wide.reset_index()
)
unemployment_combined_pre2020_filtered_wide.columns.name = None

unemployment_combined_pre2020_filtered_wide = (
unemployment_combined_pre2020_filtered_wide.dropna(how="any")
)
unemployment_combined_post2020_filtered_wide = (
unemployment_combined_post2020_filtered_wide.dropna(how="any")
)

columns_to_convert = unemployment_combined_pre2020_filtered_wide.columns[2:]
unemployment_combined_pre2020_filtered_wide[columns_to_convert] = (
unemployment_combined_pre2020_filtered_wide[columns_to_convert].astype(float)
)

columns_to_convert = unemployment_combined_post2020_filtered_wide.columns[2:]
unemployment_combined_post2020_filtered_wide[columns_to_convert] = (
unemployment_combined_post2020_filtered_wide[columns_to_convert].astype(float)
)

print(f"Pre-2020 data shape: {unemployment_combined_pre2020_filtered_wide.shape}")
print(f"Post-2020 data shape: {unemployment_combined_post2020_filtered_wide.shape}")

unemployment_combined_pre2020_filtered_wide.to_csv(
f"{root}/data/raw/unemployment_pre2020_ct.csv", index=False
)
unemployment_combined_post2020_filtered_wide.to_csv(
f"{root}/data/raw/unemployment_post2020_ct.csv", index=False
)
Loading
Loading