Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding industry composition at a census tract level #134

Merged
merged 14 commits into from
Aug 2, 2024
Merged
3 changes: 3 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -23,3 +23,6 @@ tests/.coverage
.vscode/launch.json
data/sql/counties_database.db
data/sql/msa_database.db


**/.Rproj.user/**
6 changes: 6 additions & 0 deletions cities/utils/cleaning_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
clean_income_distribution,
)
from cities.utils.cleaning_scripts.clean_industry import clean_industry
from cities.utils.cleaning_scripts.clean_industry_ct import clean_industry_CT
from cities.utils.cleaning_scripts.clean_industry_ma import clean_industry_ma
from cities.utils.cleaning_scripts.clean_industry_ts import clean_industry_ts
from cities.utils.cleaning_scripts.clean_population import clean_population
Expand All @@ -31,6 +32,7 @@
)
from cities.utils.cleaning_scripts.clean_transport import clean_transport
from cities.utils.cleaning_scripts.clean_unemployment import clean_unemployment
from cities.utils.cleaning_scripts.clean_unemployment_ct import clean_unemployment_CT
from cities.utils.cleaning_scripts.clean_urbanicity_ct import clean_urbanicity_CT
from cities.utils.cleaning_scripts.clean_urbanicity_ma import clean_urbanicity_ma
from cities.utils.cleaning_scripts.clean_urbanization import clean_urbanization
Expand All @@ -41,6 +43,10 @@

# clean_health() lost of another 15-ish fips

clean_industry_CT()

clean_unemployment_CT()

clean_urbanicity_CT()

clean_population_CT()
Expand Down
22 changes: 22 additions & 0 deletions cities/utils/cleaning_scripts/clean_industry_ct.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
from cities.utils.clean_variable import VariableCleanerCT
from cities.utils.data_grabber import find_repo_root

root = find_repo_root()


def clean_industry_CT():
cleaner = VariableCleanerCT(
variable_name="industry_pre2020_CT",
path_to_raw_csv=f"{root}/data/raw/industry_pre2020_ct.csv",
year_or_category_column_label="Category",
time_interval="pre2020",
)
cleaner.clean_variable()

cleaner2 = VariableCleanerCT(
variable_name="industry_post2020_CT",
path_to_raw_csv=f"{root}/data/raw/industry_post2020_ct.csv",
year_or_category_column_label="Category",
time_interval="post2020",
)
cleaner2.clean_variable()
22 changes: 22 additions & 0 deletions cities/utils/cleaning_scripts/clean_unemployment_ct.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
from cities.utils.clean_variable import VariableCleanerCT
from cities.utils.data_grabber import find_repo_root

root = find_repo_root()


def clean_unemployment_CT():
cleaner = VariableCleanerCT(
variable_name="unemployment_pre2020_CT",
path_to_raw_csv=f"{root}/data/raw/unemployment_pre2020_ct.csv",
year_or_category_column_label="Year",
time_interval="pre2020",
)
cleaner.clean_variable()

cleaner2 = VariableCleanerCT(
variable_name="unemployment_post2020_CT",
path_to_raw_csv=f"{root}/data/raw/unemployment_post2020_ct.csv",
year_or_category_column_label="Year",
time_interval="post2020",
)
cleaner2.clean_variable()
215 changes: 215 additions & 0 deletions cities/utils/scraping/scrape_industry_ct.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,215 @@
import numpy as np
import pandas as pd
import requests
from us import states

from cities.utils.data_grabber import find_repo_root

root = find_repo_root()
variables = (
"NAME,"
"DP03_0004E,"
"DP03_0033E,"
"DP03_0034E,"
"DP03_0035E,"
"DP03_0036E,"
"DP03_0037E,"
"DP03_0038E,"
"DP03_0039E,"
"DP03_0040E,"
"DP03_0041E,"
"DP03_0042E,"
"DP03_0043E,"
"DP03_0044E,"
"DP03_0045E"
)


county_fips = "*" # all counties
tract = "*" # all tracts
api_key = "077d857d6c12d5b9b3aeafa07d2c1916ba12a86c"
# private api key required to access the data https://api.census.gov/data/key_signup.html

interval = [2019, 2022]
dfs = []

for year in interval:
for x in range(
0, len(states.STATES)
): # in this call it's not possible to use the '*' wildcard to access all states, so we need to iterate over all states
fips = states.STATES[x].fips

url = (
f"https://api.census.gov/data/{year}/acs/acs5/profile?"
f"get={variables}&for=tract:{tract}&in=state:{fips}&in=county:{county_fips}&key={api_key}"
)

response = requests.get(url)

assert (
response.status_code == 200
), "The data retrieval went wrong" # 200 means success

print(f"{fips} fips for year {year} done")

data = response.json()

df = pd.DataFrame(data[1:], columns=data[0])
df["Year"] = year # Add the year column

dfs.append(df)

combined_df = pd.concat(dfs, ignore_index=True)


industry = combined_df.copy()

column_name_mapping = {
"DP03_0004E": "employed_sum",
"DP03_0033E": "agri_forestry_mining",
"DP03_0034E": "construction",
"DP03_0035E": "manufacturing",
"DP03_0036E": "wholesale_trade",
"DP03_0037E": "retail_trade",
"DP03_0038E": "transport_utilities",
"DP03_0039E": "information",
"DP03_0040E": "finance_real_estate",
"DP03_0041E": "prof_sci_mgmt_admin",
"DP03_0042E": "education_health",
"DP03_0043E": "arts_entertainment",
"DP03_0044E": "other_services",
"DP03_0045E": "public_admin",
}

industry.rename(columns=column_name_mapping, inplace=True)

state_abbreviations = {
"Alabama": "AL",
"Alaska": "AK",
"Arizona": "AZ",
"Arkansas": "AR",
"California": "CA",
"Colorado": "CO",
"Connecticut": "CT",
"Delaware": "DE",
"Florida": "FL",
"Georgia": "GA",
"Hawaii": "HI",
"Idaho": "ID",
"Illinois": "IL",
"Indiana": "IN",
"Iowa": "IA",
"Kansas": "KS",
"Kentucky": "KY",
"Louisiana": "LA",
"Maine": "ME",
"Maryland": "MD",
"Massachusetts": "MA",
"Michigan": "MI",
"Minnesota": "MN",
"Mississippi": "MS",
"Missouri": "MO",
"Montana": "MT",
"Nebraska": "NE",
"Nevada": "NV",
"New Hampshire": "NH",
"New Jersey": "NJ",
"New Mexico": "NM",
"New York": "NY",
"North Carolina": "NC",
"North Dakota": "ND",
"Ohio": "OH",
"Oklahoma": "OK",
"Oregon": "OR",
"Pennsylvania": "PA",
"Rhode Island": "RI",
"South Carolina": "SC",
"South Dakota": "SD",
"Tennessee": "TN",
"Texas": "TX",
"Utah": "UT",
"Vermont": "VT",
"Virginia": "VA",
"Washington": "WA",
"West Virginia": "WV",
"Wisconsin": "WI",
"Wyoming": "WY",
}

industry["GeoFIPS"] = industry.apply(
lambda row: f"{row['state']}{row['county']}{row['tract']}", axis=1
).astype(np.int64)

industry.drop(["state", "county", "tract"], axis=1, inplace=True)


def parse_geo_name(name):
if ";" in name:
parts = name.split(";")
else:
parts = name.split(",")

if len(parts) >= 3:
county = parts[1].strip().replace(" County", "")
state_full = parts[2].strip()
state_abbr = state_abbreviations.get(state_full, state_full)
return f"{county}, {state_abbr} (CT)"
return "Unknown"


industry["GeoName"] = industry["NAME"].apply(parse_geo_name).astype(str)

assert (
industry[industry["GeoName"] == "Unknown"].shape[0] == 0
), "There are Unknown GeoNames"

industry = industry.drop(["NAME"], axis=1)


rows1 = industry.shape[0]
industry.dropna(how="any", inplace=True) # Drop NaN values inplace
rows2 = industry.shape[0]
print(f"This many rows were removed because of NaNs: {rows1 - rows2}")


industry.sort_values(by=["GeoFIPS", "GeoName"], inplace=True)

cols_to_save = industry.shape[1] - 2
industry = industry[["GeoFIPS", "GeoName"] + list(industry.columns[0:cols_to_save])]
industry = industry.reset_index(drop=True)

industry_pre2020 = industry[industry["Year"] < 2020]
industry_post2020 = industry[industry["Year"] >= 2020]


industry_list = [industry_pre2020, industry_post2020]

for i in range(len(industry_list)):
industry_singl = industry_list[i]

industry_singl = industry_singl.drop(columns=["Year"])

columns_to_convert = industry_singl.columns[2:]
industry_singl[columns_to_convert] = industry_singl[columns_to_convert].astype(
float
)

industry_list[i] = industry_singl.reset_index(drop=True)


industry_pre2020, industry_post2020 = industry_list

for i in range(len(industry_list)):
industry_singl = industry_list[i]

row_sums = industry_singl.iloc[:, 3:].sum(axis=1)

industry_singl.iloc[:, 3:] = industry_singl.iloc[:, 3:].div(row_sums, axis=0)
industry_singl = industry_singl.drop(["employed_sum"], axis=1)

industry_list[i] = industry_singl

industry_pre2020, industry_post2020 = industry_list

industry_pre2020.to_csv(f"{root}/data/raw/industry_pre2020_ct.csv", index=False)
industry_post2020.to_csv(f"{root}/data/raw/industry_post2020_ct.csv", index=False)
Loading
Loading