-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
f2a36fb
commit 7222ac1
Showing
1 changed file
with
178 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,178 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Outline" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Background and motivations\n", | ||
"\n", | ||
"\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#check out zoning_new_data_pipeline\n", | ||
"use viz" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"\n", | ||
"#this comes from test_tracts_model.py\n", | ||
"\n", | ||
"data_path = os.path.join(root, \"data/minneapolis/processed/pg_census_tracts_dataset.pt\")\n", | ||
"\n", | ||
"dataset_read = torch.load(data_path, weights_only=False)\n", | ||
"\n", | ||
"loader = DataLoader(dataset_read, batch_size=len(dataset_read), shuffle=True)\n", | ||
"\n", | ||
"data = next(iter(loader))\n", | ||
"\n", | ||
"\n", | ||
"kwargs = {\n", | ||
" \"categorical\": [\"year\", \"census_tract\"],\n", | ||
" \"continuous\": {\n", | ||
" \"housing_units\",\n", | ||
" \"total_value\",\n", | ||
" \"median_value\",\n", | ||
" \"mean_limit_original\",\n", | ||
" \"median_distance\",\n", | ||
" \"income\",\n", | ||
" \"segregation_original\",\n", | ||
" \"white_original\",\n", | ||
" \"parcel_mean_sqm\",\n", | ||
" \"parcel_median_sqm\",\n", | ||
" \"parcel_sqm\",\n", | ||
" \"downtown_overlap\",\n", | ||
" \"university_overlap\",\n", | ||
" },\n", | ||
" \"outcome\": \"housing_units\",\n", | ||
"}\n", | ||
"\n", | ||
"\n", | ||
"pg_subset = select_from_data(data, kwargs)\n", | ||
"pg_dataset_read = torch.load(data_path, weights_only=False)\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"## tytulem wstepu, dane z permitow, tak jak w zoning data, babelki i media" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"## Zmienne" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Causal modeling in general\n", | ||
"\n", | ||
"tracts model overview, read, possibly update, \n", | ||
"the graphics is outdated, generate new one using ....dags.R\n", | ||
"looking at the rendering from zoning_tracts_continuous_interactions.ipynb\n", | ||
"\n", | ||
"defined in \n", | ||
"\n", | ||
"zoning_tracts_continuous_interactions_model.py\n", | ||
"\n", | ||
"btw update tracts_model_overiew with new graphics\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"## Construction and evaluation\n", | ||
"\n", | ||
"- directions of causal assumptions are rather natural, were happy for the user to modify and iterate\n", | ||
"- in adding variables we were frugal, at each step evaluating the model in terms of train-test split\n", | ||
"and WAIC \n", | ||
"\n", | ||
"-explain interactions as essentially adding another continuous predictor\n", | ||
"- explain waic briefly as well\n", | ||
"\n", | ||
"example of performance results, also with the original scale\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"## Outliers\n", | ||
"\n", | ||
"\n", | ||
"\n", | ||
"messy environment, high granularity, hard to predict some extreme events\n", | ||
"in particular, the reform does not touch university and downtown, which had their own regulation\n", | ||
"especially downtown underwent modifications not captured by the data, \n", | ||
"\n", | ||
"graph residuals for regions\n", | ||
"\n", | ||
"statsy outlierow " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"## Interventions\n", | ||
"\n", | ||
"ogolnie co to jest interwencja w tym kontekscie\n", | ||
"\n", | ||
"### Brute force example\n", | ||
"\n", | ||
"wszedzie zero wszedzie 1, porownanie\n", | ||
"\n", | ||
"### In line with the reform\n", | ||
"\n", | ||
"predict.py contains sql\n", | ||
"\n", | ||
"zoning_tracts_intervention_testing.inpyb\n", | ||
"\n", | ||
"zawiera kilka najgorszych outlierow (ktore jako przyklady bez interwencji wczesniej mozna podac)\n", | ||
"\n", | ||
"I wyjasnic roznice miedzy observed, factual, counterfactual" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"language_info": { | ||
"name": "python" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |