-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathcap_delete.c
842 lines (745 loc) · 26.6 KB
/
cap_delete.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
/**
* \file
* \brief Kernel capability deletion-related operations
*/
/*
* Copyright (c) 2007, 2008, 2009, 2010, 2011, 2012, ETH Zurich.
* All rights reserved.
*
* This file is distributed under the terms in the attached LICENSE file.
* If you do not find this file, copies can be found by writing to:
* ETH Zurich D-INFK, Universitaetstrasse 6, CH-8092 Zurich. Attn: Systems Group.
*/
#include <stdio.h>
#include <string.h>
#include <kernel.h>
#include <barrelfish_kpi/syscalls.h>
#include <barrelfish_kpi/paging_arch.h>
#include <barrelfish_kpi/lmp.h>
#include <offsets.h>
#include <capabilities.h>
#include <cap_predicates.h>
#include <distcaps.h>
#include <dispatch.h>
#include <paging_kernel_arch.h>
#include <mdb/mdb.h>
#include <mdb/mdb_tree.h>
#include <trace/trace.h>
#include <wakeup.h>
#include <kcb.h>
struct cte *clear_head, *clear_tail;
struct cte *delete_head, *delete_tail;
static errval_t caps_try_delete(struct cte *cte);
static errval_t cleanup_copy(struct cte *cte);
static errval_t cleanup_last(struct cte *cte, struct cte *ret_ram_cap);
static void caps_mark_revoke_copy(struct cte *cte);
static void caps_mark_revoke_generic(struct cte *cte);
static void clear_list_prepend(struct cte *cte);
static errval_t caps_copyout_last(struct cte *target, struct cte *ret_cte);
static uint32_t seqnum = 0;
static inline struct cte *delete_list_remove_head(void)
{
assert(delete_head);
struct cte *ret = delete_head;
if (delete_head->delete_node.next) {
delete_head = delete_head->delete_node.next;
} else {
delete_head = delete_tail = NULL;
}
// Clear delete_node.next as clear list uses the same pointer
ret->delete_node.next = NULL;
return ret;
}
static inline void delete_list_insert_head(struct cte *cte)
{
if (!delete_head) {
assert(!delete_tail);
delete_head = delete_tail = cte;
cte->delete_node.next = NULL;
}
else {
assert(delete_tail);
cte->delete_node.next = delete_head;
delete_head = cte;
}
}
static inline void delete_list_insert_tail(struct cte *cte)
{
if (!delete_tail) {
assert(!delete_head);
delete_head = delete_tail = cte;
cte->delete_node.next = NULL;
}
else {
assert(delete_head);
assert(!delete_tail->delete_node.next);
delete_tail->delete_node.next = cte;
delete_tail = cte;
cte->delete_node.next = NULL;
}
}
/**
* \brief Try a "simple" delete of a cap. If this fails, the monitor needs to
* negotiate a delete across the system.
*/
static errval_t caps_try_delete(struct cte *cte)
{
TRACE(KERNEL_CAPOPS, TRY_DELETE, seqnum);
TRACE_CAP_MSG("trying simple delete", cte);
if (distcap_is_in_delete(cte) || cte->mdbnode.locked) {
// locked or already in process of being deleted
return SYS_ERR_CAP_LOCKED;
}
TRACE(KERNEL_CAPOPS, HAS_COPIES, seqnum);
bool cap_has_copies = has_copies(cte);
if (distcap_is_foreign(cte) || cap_has_copies) {
return cleanup_copy(cte);
}
else if (cte->mdbnode.remote_copies
|| cte->cap.type == ObjType_L1CNode
|| cte->cap.type == ObjType_L2CNode
|| cte->cap.type == ObjType_Dispatcher)
{
return SYS_ERR_DELETE_LAST_OWNED;
}
else {
return cleanup_last(cte, NULL);
}
}
/**
* \brief Delete the last copy of a cap in the entire system.
* \bug Somewhere in the delete process, the remote_ancs property should be
* propagated to (remote) immediate descendants.
*/
errval_t caps_delete_last(struct cte *cte, struct cte *ret_ram_cap)
{
errval_t err;
assert(!has_copies(cte));
if (cte->mdbnode.remote_copies) {
printk(LOG_WARN, "delete_last but remote_copies is set\n");
}
TRACE_CAP_MSG("deleting last", cte);
// try simple delete
// XXX: this really should always fail, enforce that? -MN
// XXX: this is probably not the way we should enforce/check this -SG
err = caps_try_delete(cte);
if (err_no(err) != SYS_ERR_DELETE_LAST_OWNED &&
err_no(err) != SYS_ERR_CAP_LOCKED) {
return err;
}
// CNodes and dcbs contain further CTEs, so cannot simply be deleted
// instead, we place them in a clear list, which is progressivly worked
// through until each list element contains only ctes that point to
// other CNodes or dcbs, at which point they are scheduled for final
// deletion, which only happens when the clear lists are empty.
if (cte->cap.type == ObjType_L1CNode ||
cte->cap.type == ObjType_L2CNode)
{
debug(SUBSYS_CAPS, "deleting last copy of cnode: %p\n", cte);
// Mark all non-Null slots for deletion
for (cslot_t i = 0; i < cnode_get_slots(&cte->cap); i++) {
struct cte *slot = caps_locate_slot(get_address(&cte->cap), i);
caps_mark_revoke_generic(slot);
}
// At this point the cte we're deleting should always be removed from
// the delete list.
assert(cte->delete_node.next == NULL && delete_head != cte);
cte->delete_node.next = NULL;
clear_list_prepend(cte);
return SYS_ERR_OK;
}
else if (cte->cap.type == ObjType_Dispatcher)
{
debug(SUBSYS_CAPS, "deleting last copy of dispatcher: %p\n", cte);
struct capability *cap = &cte->cap;
struct dcb *dcb = cap->u.dispatcher.dcb;
// Remove from queue
scheduler_remove(dcb);
// Reset current if it was deleted
if (dcb_current == dcb) {
dcb_current = NULL;
}
// Remove from wakeup queue
wakeup_remove(dcb);
// Notify monitor
if (monitor_ep.u.endpointlmp.listener == dcb) {
printk(LOG_ERR, "monitor terminated; expect badness!\n");
monitor_ep.u.endpointlmp.listener = NULL;
} else if (monitor_ep.u.endpointlmp.listener != NULL) {
uintptr_t payload = dcb->domain_id;
err = lmp_deliver_payload(&monitor_ep, NULL, &payload, 1, false, false);
if (err_is_fail(err)) {
printk(LOG_NOTE, "while notifying monitor about domain exit: %"PRIuERRV".\n", err);
printk(LOG_NOTE, "please add the console output to the following bug report: https://code.systems.ethz.ch/T78\n");
}
assert(err_is_ok(err));
}
caps_mark_revoke_generic(&dcb->cspace);
caps_mark_revoke_generic(&dcb->disp_cte);
assert(cte->delete_node.next == NULL || delete_head == cte);
cte->delete_node.next = NULL;
clear_list_prepend(cte);
return SYS_ERR_OK;
}
else
{
// last copy, perform object cleanup
return cleanup_last(cte, ret_ram_cap);
}
}
errval_t caps_reclaim_ram(struct cte *ret_ram_cap)
{
if (kcb_current->pending_ram_in_use > 0) {
errval_t err;
// grab last ram cap off array
struct RAM ram = kcb_current->pending_ram[--kcb_current->pending_ram_in_use];
if (dcb_current != monitor_ep.u.endpointlmp.listener) {
printk(LOG_WARN, "sending fresh ram cap to non-monitor?\n");
}
assert(ret_ram_cap->cap.type == ObjType_Null);
ret_ram_cap->cap.u.ram = ram;
ret_ram_cap->cap.type = ObjType_RAM;
err = mdb_insert(ret_ram_cap);
assert(err_is_ok(err));
TRACE_CAP_MSG("reclaimed", ret_ram_cap);
// note: this is a "success" code!
kcb_current->pending_ram[kcb_current->pending_ram_in_use] = (struct RAM){ 0 };
return SYS_ERR_RAM_CAP_CREATED;
}
// if no caps to reclaim, return CAP_NOT_FOUND.
return SYS_ERR_CAP_NOT_FOUND;
}
/**
* \brief Cleanup a cap copy but not the object represented by the cap
*/
static errval_t
cleanup_copy(struct cte *cte)
{
errval_t err;
TRACE(KERNEL_CAPOPS, CLEANUP_COPY, seqnum);
TRACE_CAP_MSG("cleaning up copy", cte);
struct capability *cap = &cte->cap;
if (type_is_vnode(cap->type) ||
cap->type == ObjType_Frame ||
cap->type == ObjType_DevFrame)
{
unmap_capability(cte);
}
if (distcap_is_foreign(cte)) {
TRACE_CAP_MSG("cleaning up non-owned copy", cte);
if (cte->mdbnode.remote_copies || cte->mdbnode.remote_descs) {
struct cte *ancestor = mdb_find_ancestor(cte);
if (ancestor) {
mdb_set_relations(ancestor, RRELS_DESC_BIT, RRELS_DESC_BIT);
}
}
}
TRACE(KERNEL_CAPOPS, MDB_REMOVE, seqnum);
err = mdb_remove(cte);
if (err_is_fail(err)) {
return err;
}
TRACE_CAP_MSG("cleaned up copy", cte);
assert(!mdb_reachable(cte));
memset(cte, 0, sizeof(*cte));
return SYS_ERR_OK;
}
/**
* \brief Cleanup the last cap copy for an object and the object itself
*/
STATIC_ASSERT(68 == ObjType_Num, "Knowledge of all RAM-backed cap types");
static errval_t
cleanup_last(struct cte *cte, struct cte *ret_ram_cap)
{
errval_t err;
TRACE(KERNEL_CAPOPS, CLEANUP_LAST, seqnum);
TRACE_CAP_MSG("cleaning up last copy", cte);
struct capability *cap = &cte->cap;
assert(!has_copies(cte));
if (cte->mdbnode.remote_copies) {
printk(LOG_WARN, "cleanup_last but remote_copies is set\n");
}
// When deleting the last copy of a mapping cap, destroy the mapping
if (type_is_mapping(cte->cap.type)) {
struct Frame_Mapping *mapping = &cte->cap.u.frame_mapping;
// Only if the ptable the mapping is pointing to is a vnode type
if (type_is_vnode(mapping->ptable->cap.type)) {
err = page_mappings_unmap(&mapping->ptable->cap, cte);
if (err_is_fail(err)) {
char buf[256];
sprint_cap(buf, 256, &cte->cap);
printk(LOG_WARN, "page_mappings_unmap failed for %s\n", buf);
return err;
}
}
}
if (ret_ram_cap && ret_ram_cap->cap.type != ObjType_Null) {
return SYS_ERR_SLOT_IN_USE;
}
struct RAM ram = { .bytes = 0 };
size_t len = sizeof(struct RAM) / sizeof(uintptr_t) + 1;
if (!has_descendants(cte) && !has_ancestors(cte)) {
// List all RAM-backed capabilities here
// NB: ObjType_PhysAddr and ObjType_DevFrame caps are *not* RAM-backed!
switch(cap->type) {
case ObjType_RAM:
case ObjType_Frame:
case ObjType_EndPointUMP :
case ObjType_L1CNode:
case ObjType_L2CNode:
ram.base = get_address(cap);
ram.bytes = get_size(cap);
break;
case ObjType_Dispatcher:
// Convert to genpaddr
ram.base = local_phys_to_gen_phys(mem_to_local_phys((lvaddr_t)cap->u.dispatcher.dcb));
ram.bytes = OBJSIZE_DISPATCHER;
break;
default:
// Handle VNodes here
if(type_is_vnode(cap->type)) {
ram.base = get_address(cap);
ram.bytes = vnode_objsize(cap->type);
}
break;
}
}
// have cap to return to monitor but no allocated slot and no room in
// monitor channel; have user retry over monitor rpc interface
if (ram.bytes > 0 &&
!ret_ram_cap &&
monitor_ep.type == ObjType_EndPointLMP &&
err_is_fail(lmp_can_deliver_payload(&monitor_ep, len)))
{
return SYS_ERR_RETRY_THROUGH_MONITOR;
}
err = cleanup_copy(cte);
if (err_is_fail(err)) {
return err;
}
if(ram.bytes > 0) {
// Send back as RAM cap to monitor
if (ret_ram_cap) {
TRACE(KERNEL_CAPOPS, CREATE_RAM, seqnum);
if (dcb_current != monitor_ep.u.endpointlmp.listener) {
printk(LOG_WARN, "sending fresh ram cap to non-monitor?\n");
}
assert(ret_ram_cap->cap.type == ObjType_Null);
ret_ram_cap->cap.u.ram = ram;
ret_ram_cap->cap.type = ObjType_RAM;
err = mdb_insert(ret_ram_cap);
TRACE_CAP_MSG("reclaimed", ret_ram_cap);
assert(err_is_ok(err));
// note: this is a "success" code!
err = SYS_ERR_RAM_CAP_CREATED;
}
else if (monitor_ep.type && monitor_ep.u.endpointlmp.listener != 0) {
#ifdef TRACE_PMEM_CAPS
struct cte ramcte;
memset(&ramcte, 0, sizeof(ramcte));
ramcte.cap.u.ram = ram;
ramcte.cap.type = ObjType_RAM;
TRACE_CAP_MSG("reclaimed", &ramcte);
#endif
TRACE(KERNEL_CAPOPS, CREATE_RAM_LMP, seqnum);
// XXX: This looks pretty ugly. We need an interface.
err = lmp_deliver_payload(&monitor_ep, NULL,
(uintptr_t *)&ram,
len, false, false);
}
else {
// this is usually before the monitor is ready to get upcall when
// a core is started.
char *action = "dropping";
if (kcb_current->pending_ram_in_use < 4) {
action = "storing";
kcb_current->pending_ram[kcb_current->pending_ram_in_use++] = ram;
}
printk(LOG_WARN, "%s ram cap base %08"PRIxGENPADDR" bytes 0x%"PRIxGENSIZE"\n", action, ram.base, ram.bytes);
}
if (err_no(err) == SYS_ERR_LMP_BUF_OVERFLOW) {
// printk(LOG_WARN, "dropped ram cap base %08"PRIxGENPADDR" bytes 0x%"PRIxGENSIZE"\n", ram.base, ram.bytes);
err = SYS_ERR_OK;
} else {
assert(err_is_ok(err));
}
}
return err;
}
/*
* Mark phase of revoke mark & sweep
*/
static void caps_mark_revoke_copy(struct cte *cte)
{
errval_t err;
err = caps_try_delete(cte);
if (err_is_fail(err)) {
// this should not happen as there is a copy of the cap
panic("error while marking/deleting cap copy for revoke:"
" %"PRIuERRV"\n", err);
}
}
static void caps_mark_revoke_generic(struct cte *cte)
{
errval_t err;
if (cte->cap.type == ObjType_Null) {
return;
}
if (distcap_is_in_delete(cte)) {
return;
}
TRACE_CAP_MSG("marking for revoke", cte);
err = caps_try_delete(cte);
// If we get RETRY_THROUGH_MONITOR we're trying to delete a RAM-derived
// cap that is the last one covering the region; and need to delete it in
// a proper delete step.
if (err_no(err) == SYS_ERR_DELETE_LAST_OWNED ||
err_no(err) == SYS_ERR_RETRY_THROUGH_MONITOR)
{
cte->mdbnode.in_delete = true;
//cte->delete_node.next_slot = 0;
// insert into delete list
delete_list_insert_tail(cte);
TRACE_CAP_MSG("inserted into delete list", cte);
// because the monitors will perform a 2PC that deletes all foreign
// copies before starting the delete steps, and because the in_delete
// bit marks this cap as "busy" (see distcap_get_state), we can clear
// the remote copies bit.
cte->mdbnode.remote_copies = 0;
}
else if (err_is_fail(err)) {
// some serious mojo went down in the cleanup voodoo
panic("error while marking/deleting descendant cap for revoke:"
" %"PRIuERRV"\n", err);
} else {
// slot should now be empty
assert(cte->cap.type == ObjType_Null);
}
}
/**
* \brief Delete all copies of a foreign cap.
*/
errval_t caps_delete_foreigns(struct cte *cte)
{
errval_t err;
struct cte *next;
if (cte->mdbnode.owner == my_core_id) {
debug(SUBSYS_CAPS, "%s called on %d for %p, owner=%d\n",
__FUNCTION__, my_core_id, cte, cte->mdbnode.owner);
return SYS_ERR_DELETE_REMOTE_LOCAL;
}
assert(cte->mdbnode.owner != my_core_id);
if (cte->mdbnode.in_delete) {
printk(LOG_WARN,
"foreign caps with in_delete set,"
" this should not happen");
}
TRACE_CAP_MSG("del copies of", cte);
// Cleanup copies that are > cte in MDB
next = mdb_successor(cte);
while (next && is_copy(&cte->cap, &next->cap))
{
assert(next->mdbnode.owner != my_core_id);
if (next->mdbnode.in_delete) {
printk(LOG_WARN,
"foreign caps with in_delete set,"
" this should not happen");
}
err = cleanup_copy(next);
if (err_is_fail(err)) {
panic("error while deleting extra foreign copy for remote_delete:"
" %"PRIuERRV"\n", err);
}
next = mdb_successor(next);
}
// Cleanup copies that are < cte in MDB
next = mdb_predecessor(cte);
while (next && is_copy(&cte->cap, &next->cap))
{
assert(next->mdbnode.owner != my_core_id);
if (next->mdbnode.in_delete) {
printk(LOG_WARN,
"foreign caps with in_delete set,"
" this should not happen");
}
err = cleanup_copy(next);
if (err_is_fail(err)) {
panic("error while deleting extra foreign copy for remote_delete:"
" %"PRIuERRV"\n", err);
}
next = mdb_predecessor(next);
}
// The capabilities should all be foreign, by nature of the request.
// Foreign capabilities are rarely locked, since they can be deleted
// immediately. The only time a foreign capability is locked is during
// move and retrieve operations. In either case, the lock on the same
// capability must also be acquired on the owner for the operation to
// succeed. Thus, we can safely unlock any capability here iff the
// monitor guarentees that this operation is only executed when the
// capability is locked on the owner.
cte->mdbnode.locked = false;
err = caps_try_delete(cte);
if (err_is_fail(err)) {
panic("error while deleting foreign copy for remote_delete:"
" %"PRIuERRV"\n", err);
}
return SYS_ERR_OK;
}
/**
* \brief Mark capabilities for a revoke operation.
* \param base The data for the capability being revoked
* \param revoked The revoke target if it is on this core. This specific
* capability copy will not be marked. If supplied, is_copy(base,
* &revoked->cap) must hold.
* \returns
* - CAP_NOT_FOUND if no copies or desendants are present on this core.
* - SYS_ERR_OK otherwise.
*/
errval_t caps_mark_revoke(struct capability *base, struct cte *revoked)
{
assert(base);
assert(!revoked || revoked->mdbnode.owner == my_core_id);
// SG: In the following code, 'prev' is kind of a misnomer, this is all
// just contortions to iterate through all copies and descendants of a
// given capability. We update prev to be able to iterate through the tree
// even when we're going up and down the tree structure to find the next
// predecessor/successor. -2017-08-29.
// to avoid multiple mdb_find_greater, we store the predecessor of the
// current position.
// prev can already be a descendant if there are only descendants of base
// on this core.
struct cte *prev = mdb_find_greater(base, true), *next = NULL;
if (!prev || !(is_copy(base, &prev->cap)
|| is_ancestor(&prev->cap, base)))
{
return SYS_ERR_CAP_NOT_FOUND;
}
// Mark copies (backwards): we will never find descendants earlier in the
// ordering. However we might find copies!
for (next = mdb_predecessor(prev);
next && is_copy(base, &next->cap);
next = mdb_predecessor(prev))
{
if (next == revoked) {
// do not delete the revoked capability, use it as the new prev
// instead, and delete the old prev.
next = prev;
prev = revoked;
}
assert(revoked || next->mdbnode.owner != my_core_id);
caps_mark_revoke_copy(next);
}
// Mark copies (forward), use updated "prev". When we're done with this
// step next should be == revoked, if revoked != NULL, and succ(next)
// should be the first descendant.
for (next = mdb_successor(prev);
next && is_copy(base, &next->cap);
next = mdb_successor(prev))
{
// note: if next is a copy of base, prev will also be a copy
if (next == revoked) {
// do not delete the revoked capability, use it as the new prev
// instead, and delete the old prev.
next = prev;
prev = revoked;
}
assert(revoked || next->mdbnode.owner != my_core_id);
caps_mark_revoke_copy(next);
}
assert(!revoked || prev == revoked);
assert(is_copy(&prev->cap, base) || is_ancestor(&prev->cap, base));
// mdb_find_greater() will always find the first descendant if there's no
// copies on the core, so we can just mark descendants forwards.
// XXX: check that this is true! -SG, 2017-09-08.
// Mark descendants forwards
for (next = mdb_successor(prev);
next && is_ancestor(&next->cap, base);
next = mdb_successor(prev))
{
caps_mark_revoke_generic(next);
if (next->cap.type) {
// the cap has not been deleted, so we must use it as the new prev
prev = next;
}
}
if (prev != revoked && !prev->mdbnode.in_delete) {
if (is_copy(base, &prev->cap)) {
caps_mark_revoke_copy(prev);
}
else {
// due to early termination the condition, prev must be a
// descendant
assert(is_ancestor(&prev->cap, base));
caps_mark_revoke_generic(prev);
}
}
return SYS_ERR_OK;
}
/*
* Sweep phase
*/
static void clear_list_prepend(struct cte *cte)
{
// make sure we don't break delete list by inserting cte that hasn't been
// removed from delete list into clear list
assert(cte->delete_node.next == NULL);
if (!clear_tail) {
assert(!clear_head);
clear_head = clear_tail = cte;
cte->delete_node.next = NULL;
}
else {
assert(clear_head);
cte->delete_node.next = clear_head;
clear_head = cte;
}
TRACE_CAP_MSG("inserted into clear list", cte);
}
errval_t caps_delete_step(struct cte *ret_next)
{
errval_t err = SYS_ERR_OK;
assert(ret_next);
assert(ret_next->cap.type == ObjType_Null);
if (!delete_head) {
assert(!delete_tail);
return SYS_ERR_CAP_NOT_FOUND;
}
assert(delete_head->mdbnode.in_delete == true);
TRACE_CAP_MSG("performing delete step", delete_head);
// We remove the head of the delete list here, so that potential calls to
// caps_delete_last() below, which may insert new elements into the delete
// list, see the delete list in a consistent state, with the element
// that's currently being delete removed. -SG, 2018-11-07.
struct cte *cte = delete_list_remove_head();
if (cte->mdbnode.locked) {
err = SYS_ERR_CAP_LOCKED;
}
else if (distcap_is_foreign(cte) || has_copies(cte)) {
err = cleanup_copy(cte);
}
else if (cte->mdbnode.remote_copies) {
err = caps_copyout_last(cte, ret_next);
if (err_is_ok(err)) {
err = SYS_ERR_DELETE_LAST_OWNED;
}
}
else {
// Do delete last, which may enqueue cte on clear list
err = caps_delete_last(cte, ret_next);
if (err_is_fail(err)) {
TRACE_CAP_MSG("delete last failed", cte);
printk(LOG_WARN, "%s: caps_delete_last failed, reinserting cte=%p in delete list\n",
__FUNCTION__, cte);
// if delete_last fails, reinsert cte in front of delete list
delete_list_insert_head(cte);
}
}
if (err_is_fail(err) && err_no(err) != SYS_ERR_DELETE_LAST_OWNED) {
// something went wrong in one of the cases above, reinsert cte at
// head of delete list.
// We don't reinsert when we get SYS_ERR_DELETE_LAST_OWNED, as in
// that case the delete step succeeded but needs more work in the
// monitor.
delete_list_insert_head(cte);
}
return err;
}
errval_t caps_clear_step(struct cte *ret_ram_cap)
{
errval_t err;
assert(!delete_head);
assert(!delete_tail);
if (!clear_head) {
assert(!clear_tail);
return SYS_ERR_CAP_NOT_FOUND;
}
assert((clear_head == clear_tail) == (!clear_head->delete_node.next));
struct cte *cte = clear_head;
#ifndef NDEBUG
// some sanity checks
#define CHECK_SLOT(slot) do { \
assert((slot)->cap.type == ObjType_Null \
|| (slot)->cap.type == ObjType_L1CNode \
|| (slot)->cap.type == ObjType_L2CNode \
|| (slot)->cap.type == ObjType_Dispatcher); \
if ((slot)->cap.type != ObjType_Null) { \
assert((slot)->mdbnode.in_delete); \
} \
} while (0)
if (cte->cap.type == ObjType_L1CNode ||
cte->cap.type == ObjType_L2CNode)
{
for (cslot_t i = 0; i < cnode_get_slots(&cte->cap); i++) {
struct cte *slot = caps_locate_slot(get_address(&cte->cap), i);
CHECK_SLOT(slot);
}
}
else if (cte->cap.type == ObjType_Dispatcher) {
struct dcb *dcb = cte->cap.u.dispatcher.dcb;
CHECK_SLOT(&dcb->cspace);
CHECK_SLOT(&dcb->disp_cte);
}
else {
panic("Non-CNode/Dispatcher cap type in clear list!");
}
#undef CHECK_SLOT
#endif
TRACE_CAP_MSG("caps_clear_step for", cte);
struct cte *after = cte->delete_node.next;
err = cleanup_last(cte, ret_ram_cap);
if (err_is_ok(err)) {
if (after) {
clear_head = after;
}
else {
clear_head = clear_tail = NULL;
}
}
return err;
}
static errval_t caps_copyout_last(struct cte *target, struct cte *ret_cte)
{
errval_t err;
// create a copy in slot specified by the caller, then delete
// `next` slot so the new copy is still the last copy.
err = caps_copy_to_cte(ret_cte, target, false, 0, 0);
if (err_is_fail(err)) {
return err;
}
err = cleanup_copy(target);
if (err_is_fail(err)) {
return err;
}
return SYS_ERR_OK;
}
/*
* CNode invocations
*/
errval_t caps_delete(struct cte *cte)
{
errval_t err;
// we use the cte pointer as identifier for a set of trace points. This
// works fine, as we cannot have interleaved cpu driver trace streams on a
// single core.
TRACE(KERNEL_CAPOPS, DELETE_ENTER, ++seqnum);
TRACE_CAP_MSG("deleting", cte);
if (cte->mdbnode.locked) {
err = err_push(SYS_ERR_CAP_LOCKED, SYS_ERR_RETRY_THROUGH_MONITOR);
TRACE(KERNEL_CAPOPS, DELETE_DONE, seqnum);
return err;
}
err = caps_try_delete(cte);
if (err_no(err) == SYS_ERR_DELETE_LAST_OWNED) {
err = err_push(err, SYS_ERR_RETRY_THROUGH_MONITOR);
}
TRACE(KERNEL_CAPOPS, DELETE_DONE, seqnum);
return err;
}
errval_t caps_revoke(struct cte *cte)
{
TRACE_CAP_MSG("revoking", cte);
if (cte->mdbnode.locked) {
return SYS_ERR_CAP_LOCKED;
}
return SYS_ERR_RETRY_THROUGH_MONITOR;
}