-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.py
36 lines (28 loc) · 1.02 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import glob
import torch
import yaml
from net.Net import Net
from PIL import Image
from torchsummary import summary
from torchvision import transforms
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
path = "/home/bramvr/datasets/rear_signal_dataset_sampleset/lighting"
transform = transforms.Compose([transforms.Resize(size=(227, 227)),
transforms.ToTensor()])
images = []
for i, f in enumerate(glob.iglob(f"{path}/*.png")):
if i == 1:
break
images.append(transform(Image.open(f)))
input = torch.stack(images).to(device)
config_file = "config/net/net.yaml"
config = yaml.load(open(config_file), Loader=yaml.FullLoader)
net = Net(config).to(device)
summary(net.model['cnn'], (config["input"]["dim"], config["input"]["size"], config["input"]["size"]))
checkpoint = torch.load('weights/weights_29.pt', map_location=device)
net.load_state_dict(checkpoint['model'])
# Example usage
y_list = net.forward_sequence_list([input, input])
y1 = net(input)
print(y1)
print(y_list)