This repository has been archived by the owner on Apr 30, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPhaseOffsetFinder.py
375 lines (313 loc) · 14.4 KB
/
PhaseOffsetFinder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# Setup
from scipy.signal import find_peaks
from scipy.optimize import curve_fit
from scipy.optimize import differential_evolution
from scipy.optimize import minimize
from scipy.interpolate import interp1d
import argparse
import numpy as np
import matplotlib.pyplot as plt
import copy
import csaps
# Settings
smoothing = 1
height = 0.3
distance = 10
width = 3
NUM_PORTS = 4
middlefreq = 187.75
# Helper Functions
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def cos2(frequency, a, phi):
return pow(np.cos(a * frequency + phi), 2)
def cos_squared(f, a, b, c, phi):
return pow(a * np.cos(b * f + phi), 2) + c
def J(frequency, power, x):
return np.sum(np.abs(cos2(frequency, x[0], x[1]) - power) ** 2)
def freq(wavelength):
c = 299792458
return c / wavelength
global COUNT
COUNT = 0
# Object class for finding crossover frequency
class DeviceResult:
POLY_ORDER = 10
PEAKFINDING_POLY = 10
def __init__(self, filename, wavelength=None, power=None):
self.local_result = None
self.filename = filename
self.wavelength = np.squeeze(wavelength)
self.power = power
def phase(self, frequency, port):
phase = np.array(2 * self.local_result[port].x[0] * frequency + 2 * self.local_result[port].x[1])
if phase.size > 1:
phase = np.unwrap(np.angle(np.exp(1j * phase))) + np.pi
else:
phase = (np.angle(np.exp(1j * phase))) + np.pi
return phase
def plotPowerLinearNorm(self):
plt.plot(self.wavelength, self.powerLinearNorm)
def plotPowerLinearNormByFreq(self, port):
plt.plot(self.frequency, self.powerLinearNormByFreq[:, port])
def plotPowerHighSampNormByFreq(self, port):
plt.plot(self.freqHighSamp, self.powerHighSampNorm[:, port])
def plotGlobalOptimizationCurve(self, port):
plt.plot(self.freqHighSamp,
cos2(self.freqHighSamp, self.global_result[port].x[0], self.global_result[port].x[1]))
def plotLocalOptimizationCurve(self, port):
plt.plot(self.freqHighSamp, cos2(self.freqHighSamp, self.local_result[port].x[0], self.local_result[port].x[1]))
def plotPhase(self, port=None):
if port is not None:
plt.plot(self.frequency, self.phase(self.frequency, port), label='Port {}'.format(port))
else:
for i in range(NUM_PORTS):
self.plotPhase(port=i)
def plotPolarPhaseAtFreq(self, frequency, ax, normalize=False):
phase0 = self.phase(frequency, 0)
if not normalize:
phi0 = np.exp(1j * phase0)
else:
phi0 = np.exp(1j * 0)
plt.plot(np.real(phi0), np.imag(phi0), 'x', label='Port 0', markersize=10.0, markeredgewidth=3.0)
for i in range(1, NUM_PORTS):
if not normalize:
phasei = self.phase(frequency, i)
else:
phasei = self.phase(frequency, i) - phase0
phii = np.exp(1j * phasei)
plt.plot(np.real(phii), np.imag(phii), 'x', label=('Port ' + str(i)), markersize=10.0, markeredgewidth=3.0)
ax.add_patch(plt.Circle((0, 0), radius=1, edgecolor='0.0', facecolor='None', ls='--'))
ax.set_aspect('equal', 'box')
plt.xlim([-1.1, 1.1])
plt.ylim([-1.1, 1.1])
plt.grid(True)
def plotPolarRange(self):
frequency = 190
phase0l = self.phase(frequency, 0)
phase1l = self.phase(frequency, 1) - phase0l
phase2l = self.phase(frequency, 2) - phase0l
phase0l = phase0l - phase0l
frequency = 197
phase0h = self.phase(frequency, 0)
phase1h = self.phase(frequency, 1) - phase0h
phase2h = self.phase(frequency, 2) - phase0h
phase0h = phase0h - phase0h
phase0l = (phase0l + 2 * np.pi) % (2 * np.pi)
phase1l = (phase1l + 2 * np.pi) % (2 * np.pi)
phase2l = (phase2l + 2 * np.pi) % (2 * np.pi)
phase0h = (phase0h + 2 * np.pi) % (2 * np.pi)
phase1h = (phase1h + 2 * np.pi) % (2 * np.pi)
phase2h = (phase2h + 2 * np.pi) % (2 * np.pi)
phi0 = np.linspace(phase0l, phase0h)
if phi0[0] > phi0[-1]:
phi0 = np.flip(phi0)
phi1 = np.linspace(phase1l, phase1h)
if phi1[0] > phi1[-1]:
phi1 = np.flip(phi1)
phi2 = np.linspace(phase2l, phase2h)
if phi2[0] > phi2[-1]:
phi2 = np.flip(phi2)
factor = 0.03
global COUNT
loc = 1 + factor * COUNT
vals = np.linspace(loc, loc)
COUNT += 1
plt.polar(phi0[0], loc, 'rx')
plt.polar(phi0[-1], loc, 'rx')
plt.polar(phi0, vals)
plt.polar(phi1[0], loc, 'bx')
plt.polar(phi1[-1], loc, 'bx')
plt.polar(phi1, vals)
plt.polar(phi2[0], loc, 'kx')
plt.polar(phi2[-1], loc, 'kx')
plt.polar(phi2, vals)
plt.grid(True)
plt.show()
return phi0, phi1, phi2
def find_phase_offset(file_names: list, TEST=False):
wavelength = np.array([])
power_data = np.zeros((5001, 4))
for i in range(len(file_names)):
file_data = np.load(file_names[i], mmap_mode='r')
wavelength = np.array(file_data['wavelength']) * 1e-9
power_data[:, i] = 20 * np.log10(np.array(file_data['power']).clip(min=0.0000001))
device_results = DeviceResult('Device_21', wavelength, power_data)
power_norm = copy.deepcopy(device_results.power)
plt.figure()
plt.suptitle('Device ' + device_results.filename)
for i in range(0, NUM_PORTS):
plt.subplot(NUM_PORTS, 1, i + 1)
amplitude = device_results.power[:, i]
plt.plot(device_results.wavelength * 1e9, amplitude, label='Measured')
p = np.polyfit(device_results.wavelength - np.mean(device_results.wavelength), amplitude, device_results.POLY_ORDER)
amplitude_baseline = np.polyval(p, device_results.wavelength - np.mean(device_results.wavelength))
amplitude_corrected = amplitude - amplitude_baseline
amplitude_corrected = amplitude_corrected + max(amplitude_baseline) - max(amplitude)
plt.plot(device_results.wavelength * 1e9, amplitude_corrected, label='GC removed')
plt.legend()
plt.xlim((1560, 1620))
power_norm[:, i] = amplitude_corrected
if TEST:
plt.show()
powers = 10 ** (power_norm / 20)
plt.figure()
plt.suptitle('Device ' + device_results.filename)
device_results.powerLinearNorm = copy.deepcopy(powers)
for i in range(0, NUM_PORTS):
x = device_results.wavelength
# power_negative = -one.powerLinearNorm[:, i]
# offset = -np.amin(power_negative)
# power_negative += offset
# lower_peaks = find_peaks(power_negative, height=height, distance=distance, width=width)[0]
# lower_fit = interp1d(x[lower_peaks], power_negative[lower_peaks], kind='cubic', fill_value='extrapolate')
# bottom_baseline = lower_fit(x)
# power_negative /= bottom_baseline
# power = np.array(-(power_negative - 1))
power = device_results.powerLinearNorm[:, i]
top_pkidx = find_peaks(power, height=height, distance=distance, width=width)[0]
p = interp1d(x[top_pkidx], power[top_pkidx], kind='cubic', fill_value='extrapolate')
top_baseline = p(x)
plt.subplot(NUM_PORTS, 1, i + 1)
plt.title('Port ' + str(i + 1))
plt.plot(x[top_pkidx] * 1e9, power[top_pkidx], "x")
plt.plot(x * 1e9, power)
plt.plot(x * 1e9, top_baseline)
plt.xlim((1560, 1620))
device_results.powerLinearNorm[:, i] = power / top_baseline
if TEST:
plt.show()
# print("Device \'" + one.filename + "\': Converting from wavelength to frequency")
# Slice off the bottom of the array which has wild tails due to spline fitting
device_results.frequency = np.flip(freq(device_results.wavelength) / 1e12)
device_results.powerLinearNormByFreq = np.flipud(device_results.powerLinearNorm)
print(device_results.frequency.shape, device_results.powerLinearNormByFreq.shape)
device_results.frequency = device_results.frequency[50:]
device_results.powerLinearNormByFreq = device_results.powerLinearNormByFreq[50:, :]
print(device_results.frequency.shape, device_results.powerLinearNormByFreq.shape)
# print("\n")
# print("Data Preview:")
# print("=============")
# print("Frequency array:", one.frequency)
# print("Power array:", one.powerLinearNormByFreq)
plt.figure()
for i in range(0, NUM_PORTS):
plt.subplot(NUM_PORTS, 1, i + 1)
plt.title('Port ' + str(i + 1))
plt.plot(device_results.frequency, device_results.powerLinearNormByFreq[:, i])
if TEST:
plt.show()
# print("Smoothing:", smoothing)
device_results.sp = []
device_results.sp.append(
csaps.UnivariateCubicSmoothingSpline(device_results.frequency, device_results.powerLinearNormByFreq[:, 0], smooth=smoothing))
device_results.sp.append(
csaps.UnivariateCubicSmoothingSpline(device_results.frequency, device_results.powerLinearNormByFreq[:, 1], smooth=smoothing))
device_results.sp.append(
csaps.UnivariateCubicSmoothingSpline(device_results.frequency, device_results.powerLinearNormByFreq[:, 2], smooth=smoothing))
device_results.sp.append(
csaps.UnivariateCubicSmoothingSpline(device_results.frequency, device_results.powerLinearNormByFreq[:, 3], smooth=smoothing))
N = 10000
device_results.freqHighSamp = np.linspace(min(device_results.frequency), max(device_results.frequency), num=N)
powerHighSamp0 = device_results.sp[0](device_results.freqHighSamp)
powerHighSamp0 = powerHighSamp0 / max(powerHighSamp0)
powerHighSamp1 = device_results.sp[1](device_results.freqHighSamp)
powerHighSamp1 = powerHighSamp1 / max(powerHighSamp1)
powerHighSamp2 = device_results.sp[2](device_results.freqHighSamp)
powerHighSamp2 = powerHighSamp2 / max(powerHighSamp2)
powerHighSamp3 = device_results.sp[3](device_results.freqHighSamp)
powerHighSamp3 = powerHighSamp3 / max(powerHighSamp3)
device_results.powerHighSampNorm = np.stack((powerHighSamp0, powerHighSamp1, powerHighSamp2, powerHighSamp3), axis=1)
plt.figure()
plt.suptitle(device_results.filename)
for i in range(0, NUM_PORTS):
plt.subplot(NUM_PORTS, 1, i + 1)
plt.title('Port ' + str(i + 1))
plt.plot(device_results.frequency, device_results.powerLinearNormByFreq[:, i], label='Normalized')
plt.plot(device_results.freqHighSamp, device_results.powerHighSampNorm[:, i], label='Fit to Spline')
plt.legend()
if TEST:
plt.show()
cosine_fit, cosine_covariance = curve_fit(cos_squared, device_results.freqHighSamp, device_results.powerHighSampNorm[:, i])
plt.plot(device_results.freqHighSamp, device_results.powerHighSampNorm[:, i])
plt.plot(device_results.freqHighSamp, cos_squared(device_results.freqHighSamp, *cosine_fit))
if TEST:
plt.show()
# print("====================")
# print(one.filename)
device_results.global_result = [None] * NUM_PORTS
device_results.local_result = [None] * NUM_PORTS
for port in range(NUM_PORTS):
Jmod = lambda x: J(device_results.freqHighSamp, device_results.powerHighSampNorm[:, port], x)
bounds = [(0, 40), (0, 2 * np.pi)]
# Global optimization
device_results.global_result[port] = differential_evolution(Jmod, bounds)
# Convex optimization
device_results.local_result[port] = minimize(Jmod, device_results.global_result[port].x, method='nelder-mead')
# Verbose
# print('Port ' + str(port+1))
# print('Global:', one.global_result[port].x, one.global_result[port].fun)
# print('Local:', one.local_result[port].x, one.local_result[port].fun)
plt.figure()
plt.suptitle(device_results.filename)
for port in range(NUM_PORTS):
plt.subplot(NUM_PORTS, 1, port + 1)
device_results.plotPowerLinearNormByFreq(port)
device_results.plotPowerHighSampNormByFreq(port)
device_results.plotGlobalOptimizationCurve(port)
device_results.plotLocalOptimizationCurve(port)
plt.xlabel("Frequency (THz)")
plt.ylabel("Amplitude (arbitrary units)")
plt.xlim((freq(1620 * 1e-9) * 1e-12, freq(1560 * 1e-9) * 1e-12))
plt.title("Power")
if TEST:
plt.show()
phasediff = device_results.phase(device_results.frequency, 0) - device_results.phase(device_results.frequency, 2)
middleindex = min(range(len(phasediff)), key=lambda i: abs(phasediff[i] - (np.pi / 2)))
print("CROSSOVER FREQUENCY: ", device_results.frequency[middleindex], "THz")
c0 = 299792458 # m/s
crossover_wavelength = c0 / (device_results.frequency[middleindex] * 1e12)
print("CROSSOVER WAVELENGTH:", crossover_wavelength * 1e9, "nm")
middlefreq = device_results.frequency[middleindex]
freq_array = [min(device_results.frequency), middlefreq, max(device_results.frequency)]
fig = plt.figure(constrained_layout=True, figsize=(18, 16), dpi=80, facecolor='w', edgecolor='k')
gs = fig.add_gridspec(3, 3)
ax = fig.add_subplot(gs[0, :])
for i in range(NUM_PORTS):
device_results.plotPowerLinearNormByFreq(i)
for i in range(3):
plt.axvline(freq_array[i], ls='--', color='0.0')
plt.text(freq_array[i] - 0.02, -0.20, chr(i + 97) + ".")
plt.ylabel("Power (a.u.)")
plt.grid(True)
ax = fig.add_subplot(gs[1, :])
device_results.plotPhase()
for i in range(3):
plt.axvline(freq_array[i], ls='--', color='0.0')
plt.ylabel("Phase (rad)")
plt.xlabel("Frequency (THz)")
plt.grid(True)
mini = fig.add_subplot(gs[2, 0])
device_results.plotPolarPhaseAtFreq(freq_array[0], mini, True)
plt.title("a.")
mini = fig.add_subplot(gs[2, 1])
device_results.plotPolarPhaseAtFreq(freq_array[1], mini, True)
plt.title("b.")
mini = fig.add_subplot(gs[2, 2])
device_results.plotPolarPhaseAtFreq(freq_array[2], mini, True)
plt.title("c.")
plt.show()
if __name__ == "__main__":
file_names = ["X1_data.npz", "X2_data.npz", "P1_data.npz", "P2_data.npz"]
# Read in the data
for i in range(len(file_names)):
file_names[i] = "C:\\Users\\camacho\\Desktop\\Data_Acquisition\\Measurement_Data" \
"\\D21_00\\offset_finding\\" + file_names[i]
find_phase_offset(file_names, True)