diff --git a/examples/database/cora_dataset.py b/examples/database/cora_dataset.py new file mode 100644 index 00000000..64d2c56b --- /dev/null +++ b/examples/database/cora_dataset.py @@ -0,0 +1,42 @@ +import os +import os.path as osp +import os +import tensorlayerx as tlx + +import numpy as np +import scipy.sparse as sp +from gammagl.data import extract_zip, download_url, InMemoryDataset, Graph +from gammagl.sparse.coalesce import coalesce +import pickle +from sklearn.model_selection import train_test_split +import torch +class Cora(InMemoryDataset): + + def __init__(self, db_dataset): + self.db_dataset = db_dataset + self.graph = self.processCora() + + def processCora(self): + data = self.db_dataset + x = tlx.convert_to_tensor(data['X_dict']['node'], dtype=tlx.float32) + y = tlx.convert_to_tensor(data['Y_dict']['node'], dtype=tlx.int64) + + edge = data['edge_index_dict']['edge'] + data = Graph(edge_index=edge, x=x, y=y) + + + #split dataset + X_num = self.db_dataset['X_dict']['node'].shape[0] + X_ids = np.arange(X_num) + X_train_val, X_test = train_test_split(X_ids, test_size=0.2, random_state=42) + X_train, X_val = train_test_split(X_train_val, test_size=0.25, random_state=42) + idx_train = range(140) + idx_val = range(200, 500) + idx_test = range(500, 1500) + train_idx = tlx.convert_to_tensor(idx_train) + test_idx = tlx.convert_to_tensor(idx_val) + val_idx = tlx.convert_to_tensor(idx_test) + data.train_idx = train_idx + data.test_idx= test_idx + data.val_idx = val_idx + return data diff --git a/examples/database/cora_sage.py b/examples/database/cora_sage.py new file mode 100644 index 00000000..d180288c --- /dev/null +++ b/examples/database/cora_sage.py @@ -0,0 +1,135 @@ +import os +os.environ['TL_BACKEND'] = 'torch' +from gammagl.utils import mask_to_index +from tensorlayerx.model import WithLoss, TrainOneStep +from tqdm import tqdm +from gammagl.datasets import Reddit +import tensorlayerx as tlx +import argparse +from gammagl.loader.neighbor_sampler import NeighborSampler +from gammagl.models import GraphSAGE_Sample_Model +from gammagl.datasets import Planetoid +from cora_dataset import Cora +import pickle +from gdbi import NodeExportConfig, EdgeExportConfig, Neo4jInterface + +class SemiSpvzLoss(WithLoss): + def __init__(self, net, loss_fn): + super(SemiSpvzLoss, self).__init__(backbone=net, loss_fn=loss_fn) + + def forward(self, data, y): + logits = self.backbone_network(data['x'], data['subgs']) + loss = self._loss_fn(logits, tlx.gather(data['y'], data['dst_node'])) + return loss + + +def calculate_acc(logits, y, metrics): + """ + Args: + logits: node logits + y: node labels + metrics: tensorlayerx.metrics + + Returns: + rst + """ + + metrics.update(logits, y) + rst = metrics.result() + metrics.reset() + return rst + + +def main(args): + # load cora dataset + graph_address = '' + user_name = '' + passward = '' + node_export_config = [NodeExportConfig('node', ['attribute'], ['label'])] + edge_export_config = [EdgeExportConfig('edge', ('node', 'node'))] + graph_database = Neo4jInterface() + conn = graph_database.GraphDBConnection(graph_address=graph_address, user_name=user_name, password=passward) + db_dataset = graph_database.get_graph(conn,"cora",node_export_config,edge_export_config) + + dataset = Cora(db_dataset) + graph = dataset.graph + + idx_train = range(140) + idx_val = range(200, 500) + idx_test = range(500, 1500) + train_idx = tlx.convert_to_tensor(idx_train) + test_idx = tlx.convert_to_tensor(idx_val) + val_idx = tlx.convert_to_tensor(idx_test) + num_classes = 7 + + train_loader = NeighborSampler(edge_index=graph.edge_index, + node_idx=train_idx, + sample_lists=[25, 10], batch_size=2048, shuffle=True, num_workers=0) + + val_loader = NeighborSampler(edge_index=graph.edge_index, + node_idx=val_idx, + sample_lists=[-1], batch_size=2048 * 2, shuffle=False, num_workers=0) + test_loader = NeighborSampler(edge_index=graph.edge_index, + node_idx=test_idx, + sample_lists=[-1], batch_size=2048 * 2, shuffle=False, num_workers=0) + + x = tlx.convert_to_tensor(graph.x) + y = tlx.convert_to_tensor(graph.y, dtype=tlx.int64) + + net = GraphSAGE_Sample_Model(in_feat=graph.num_node_features, + hid_feat=args.hidden_dim, + out_feat=num_classes, + drop_rate=args.drop_rate, + num_layers=args.num_layers) + optimizer = tlx.optimizers.Adam(args.lr) + metrics = tlx.metrics.Accuracy() + train_weights = net.trainable_weights + + loss_func = SemiSpvzLoss(net, tlx.losses.softmax_cross_entropy_with_logits) + train_one_step = TrainOneStep(loss_func, optimizer, train_weights) + + for epoch in range(args.n_epoch): + pbar = tqdm(total=int(len(train_loader.dataset))) + pbar.set_description(f'Epoch {epoch:02d}') + for dst_node, n_id, adjs in train_loader: + net.set_train() + # input : sampled subgraphs, sampled node's feat + data = {"x": tlx.gather(x, n_id), + "y": y, + "dst_node": dst_node, + "subgs": adjs} + # label is not used + train_loss = train_one_step(data, tlx.convert_to_tensor([0])) + pbar.update(len(dst_node)) + print("Epoch [{:0>3d}] ".format(epoch + 1) + " train loss: {:.4f}".format(train_loss.item())) + + logits = net.inference(x, val_loader, data['x']) + if tlx.BACKEND == 'torch': + val_idx = val_idx.to(data['x'].device) + val_logits = tlx.gather(logits, val_idx) + val_y = tlx.gather(data['y'], val_idx) + val_acc = calculate_acc(val_logits, val_y, metrics) + + logits = net.inference(x, test_loader, data['x']) + test_logits = tlx.gather(logits, test_idx) + test_y = tlx.gather(data['y'], test_idx) + test_acc = calculate_acc(test_logits, test_y, metrics) + + print("val acc: {:.4f} || test acc{:.4f}".format(val_acc, test_acc)) + + +if __name__ == '__main__': + # parameters setting + parser = argparse.ArgumentParser() + parser.add_argument("--lr", type=float, default=0.005, help="learnin rate") + parser.add_argument("--n_epoch", type=int, default=500, help="number of epoch") + parser.add_argument("--hidden_dim", type=int, default=512, help="dimention of hidden layers") + parser.add_argument("--drop_rate", type=float, default=0.8, help="drop_rate") + parser.add_argument("--num_layers", type=int, default=2) + parser.add_argument("--l2_coef", type=float, default=0., help="l2 loss coeficient") + parser.add_argument('--dataset', type=str, default='cora', help='dataset') + parser.add_argument("--dataset_path", type=str, default=r'', help="path to save dataset") + # parser.add_argument("--best_model_path", type=str, default=r'./', help="path to save best model") + args = parser.parse_args() + + main(args) diff --git a/examples/database/readme.md b/examples/database/readme.md new file mode 100644 index 00000000..1fb91c07 --- /dev/null +++ b/examples/database/readme.md @@ -0,0 +1,33 @@ +# Graph Database Interface Example + + + +## Install gdbi +```bash +pip install git+https://github.com/xy-Ji/gdbi.git +``` +gdbi implements 4 graph database interfaces. You can use these interfaces to operate the graph database and retrieve specified dataset from the graph database. + +gdbi link: [https://github.com/xy-Ji/gdbi](https://github.com/xy-Ji/gdbi) + +## Example +```python +from gdbi import NodeExportConfig, EdgeExportConfig, Neo4jInterface, NebulaInterface + +node_export_config = list(NodeExportConfig(labelname, x_property_names, y_property_names)) +edge_export_config = list(EdgeExportConfig(labelname, src_dst_label, x_property_names, y_property_names)) + +# neo4j +graph_database = Neo4jInterface() + +# nebula +graph_database = NebulaInterface() + +conn = graph_database.GraphDBConnection(graph_address, user_name, password) +graph = graph_database.get_graph(conn, graph_name, node_export_config, edge_export_config) +``` + +**Run example** +```bash +TL_BACKEND=torch python cora_sage.py --dataset cora --n_epoch 500 --lr 0.005 --hidden_dim 512 --drop_rate 0.8 +``` \ No newline at end of file