Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition, arxiv
PaddlePaddle training/validation code and pretrained models for ViP.
The official and 3rd party pytorch implementation are here.
This implementation is developed by PPViT.
- Update (2022-03-30): Code is refactored.
- Update (2021-11-03): Code and weights are updated.
- Update (2021-09-23): Code is released and ported weights are uploaded.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
vip_s7 | 81.48 | 95.76 | 25.1M | 7.0G | 224 | 0.9 | bicubic | google/baidu |
vip_m7 | 82.64 | 96.12 | 55.3M | 16.4G | 224 | 0.9 | bicubic | google/baidu |
vip_l7 | 83.18 | 96.37 | 87.8M | 24.5G | 224 | 0.875 | bicubic | google/baidu |
*The results are evaluated on ImageNet2012 validation set.
Note: ViP weights are ported from here
ImageNet2012 dataset is used in the following file structure:
│imagenet/
├──train_list.txt
├──val_list.txt
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
train_list.txt
: list of relative paths and labels of training images. You can download it from: google/baiduval_list.txt
: list of relative paths and labels of validation images. You can download it from: google/baidu
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume weight file is downloaded in ./vip_s.pdparams
, to use the vip_s
model in python:
from config import get_config
from vip import build_vip as build_model
# config files in ./configs/
config = get_config('./configs/vip_s.yaml')
# build model
model = build_model(config)
# load pretrained weights
model_state_dict = paddle.load('./vip_s.pdparams')
model.set_state_dict(model_state_dict)
To evaluate model performance on ImageNet2012, run the following script using command line:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/vip_s.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./vip_s.pdparams' \
-amp
Note: if you have only 1 GPU, change device number to
CUDA_VISIBLE_DEVICES=0
would run the evaluation on single GPU.
To train the model on ImageNet2012, run the following script using command line:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/vip_s.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-amp
Note: it is highly recommanded to run the training using multiple GPUs / multi-node GPUs.
@misc{hou2021vision,
title={Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition},
author={Qibin Hou and Zihang Jiang and Li Yuan and Ming-Ming Cheng and Shuicheng Yan and Jiashi Feng},
year={2021},
eprint={2106.12368},
archivePrefix={arXiv},
primaryClass={cs.CV}
}