RepLKNet: Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs arxiv
PaddlePaddle training/validation code and pretrained models for the model released in CVPR2022: RepLKNet (classification backbone).
The official PyTorch implementation is here.
This implementation is developed by PaddleViT.
- Update (2022-07-15): Code is released and ported weights are uploaded.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
replknet-31b-1k-224 | 83.48 | 96.57 | 79M | 15.3G | 224 | 0.875 | bicubic | google/baidu |
replknet-31b-1k-384 | 84.58 | 97.23 | 79M | 45.1G | 384 | 1.0 | bicubic | google/baidu |
replknet-31b-22k1k-224 | 85.20 | 97.56 | 79M | 15.3G | 224 | 0.875 | bicubic | google/baidu |
replknet-31b-22k1k-384 | 85.77 | 97.68 | 79M | 45.1G | 384 | 1.0 | bicubic | google/baidu |
replknet-31l-22k1k-384 | 86.38 | 97.88 | 172M | 96.0G | 384 | 1.0 | bicubic | google/baidu |
replknet-xl-73m1k-320 | - | - | 335M | 128.7G | 320 | 1.0 | bicubic | google/baidu |
replknet-31b-22k | - | - | 79M | 15.3G | 224 | 0.875 | bicubic | google/baidu |
replknet-31l-22k | - | - | 172M | 96.0G | 384 | 1.0 | bicubic | google/baidu |
*The results are above are ported from official implemetation and evaluated on ImageNet2012 validation set.
ImageNet2012 dataset is used in the following file structure:
│imagenet/
├──train_list.txt
├──val_list.txt
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
train_list.txt
: list of relative paths and labels of training images. You can download it from: google/baiduval_list.txt
: list of relative paths and labels of validation images. You can download it from: google/baidu
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume weight file is downloaded in ./replknet_31b.pdparams
, to use the replknet_31b
model in python:
from config import get_config
from replknet import build_replknet as build_model
# config files in ./configs/
config = get_config('./configs/replknet_31b.yaml')
# build model
model = build_model(config)
# load pretrained weights
model_state_dict = paddle.load('./replknet_31b.pdparams')
model.set_state_dict(model_state_dict)
To evaluate model performance on ImageNet2012, run the following script using command line:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/replknet_31b.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./replknet_31b.pdparams' \
-amp
Note: if you have only 1 GPU, change device number to
CUDA_VISIBLE_DEVICES=0
would run the evaluation on single GPU.
To train the model on ImageNet2012, run the following script using command line:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/replknet_31b.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-amp
Note: it is highly recommanded to run the training using multiple GPUs / multi-node GPUs.
@article{replknet,
title={Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs},
author={Ding, Xiaohan and Zhang, Xiangyu and Zhou, Yizhuang and Han, Jungong and Ding, Guiguang and Sun, Jian},
journal={arXiv preprint arXiv:2203.06717},
year={2022}
}