Rethinking Spatial Dimensions of Vision Transformers, arxiv
PaddlePaddle training/validation code and pretrained models for PiT.
The official pytorch implementation is here.
This implementation is developed by PaddleViT.
- Update (2022-03-30): Code is refactored.
- Update (2021-12-08): Code is updated and ported weights are uploaded.
- Update (2021-11-13): Code is released.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
pit_ti | 72.91 | 91.40 | 4.8M | 0.5G | 224 | 0.9 | bicubic | google/baidu |
pit_ti_distill | 74.54 | 92.10 | 5.1M | 0.5G | 224 | 0.9 | bicubic | google/baidu |
pit_xs | 78.18 | 94.16 | 10.5M | 1.1G | 224 | 0.9 | bicubic | google/baidu |
pit_xs_distill | 79.31 | 94.36 | 10.9M | 1.1G | 224 | 0.9 | bicubic | google/baidu |
pit_s | 81.08 | 95.33 | 23.4M | 2.4G | 224 | 0.9 | bicubic | google/baidu |
pit_s_distill | 81.99 | 95.79 | 24.0M | 2.5G | 224 | 0.9 | bicubic | google/baidu |
pit_b | 82.44 | 95.71 | 73.5M | 10.6G | 224 | 0.9 | bicubic | google/baidu |
pit_b_distill | 84.14 | 96.86 | 74.5M | 10.7G | 224 | 0.9 | bicubic | google/baidu |
*The results are evaluated on ImageNet2012 validation set.
Teacher Model | Link |
---|---|
RegNet_Y_160 | google/baidu |
ImageNet2012 dataset is used in the following file structure:
│imagenet/
├──train_list.txt
├──val_list.txt
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
train_list.txt
: list of relative paths and labels of training images. You can download it from: google/baiduval_list.txt
: list of relative paths and labels of validation images. You can download it from: google/baidu
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume weight file is downloaded in ./pit_b_224.pdparams
, to use the pit_b_224
model in python:
from config import get_config
from pit import build_pit as build_model
# config files in ./configs/
config = get_config('./configs/pit_b_224.yaml')
# build model
model = build_model(config)
# load pretrained weights
model_state_dict = paddle.load('./pit_b_224.pdparams')
model.set_state_dict(model_state_dict)
To evaluate model performance on ImageNet2012, run the following script using command line:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/pit_b_224.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./pit_b_224.pdparams' \
-amp
Note: if you have only 1 GPU, change device number to
CUDA_VISIBLE_DEVICES=0
would run the evaluation on single GPU.
To train the model on ImageNet2012 with distillation, run the following script using command line:
sh run_train_multi_distill.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu_distill.py \
-cfg='./configs/pit_b_distilled_224.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-amp
Note: it is highly recommanded to run the training using multiple GPUs / multi-node GPUs.
To finetune the model on ImageNet2012, run the following script using command line:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu_distill.py \
-cfg='./configs/pit_b_distilled_384.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-pretrained='./pit_b_distilled_224.pdparams' \
-amp
Note: use
-pretrained
argument to set the pretrained model path, you may also need to modify the hyperparams defined in config file.
@inproceedings{heo2021pit,
title={Rethinking Spatial Dimensions of Vision Transformers},
author={Byeongho Heo and Sangdoo Yun and Dongyoon Han and Sanghyuk Chun and Junsuk Choe and Seong Joon Oh},
booktitle = {International Conference on Computer Vision (ICCV)},
year={2021},
}