-
Notifications
You must be signed in to change notification settings - Fork 318
/
droppath.py
59 lines (52 loc) · 2.02 KB
/
droppath.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Droppath, reimplement from https://github.com/yueatsprograms/Stochastic_Depth
"""
import paddle
import paddle.nn as nn
class DropPath(nn.Layer):
"""DropPath class"""
def __init__(self, drop_prob=None):
super().__init__()
self.drop_prob = drop_prob
def drop_path(self, inputs):
"""drop path op
Args:
input: tensor with arbitrary shape
drop_prob: float number of drop path probability, default: 0.0
training: bool, if current mode is training, default: False
Returns:
output: output tensor after drop path
"""
# if prob is 0 or eval mode, return original input
if self.drop_prob == 0. or not self.training:
return inputs
keep_prob = 1 - self.drop_prob
keep_prob = paddle.to_tensor(keep_prob, dtype='float32')
shape = (inputs.shape[0], ) + (1, ) * (inputs.ndim - 1) # shape=(N, 1, 1, 1)
random_tensor = keep_prob + paddle.rand(shape, dtype=inputs.dtype)
random_tensor = random_tensor.floor() # mask
output = inputs.divide(keep_prob) * random_tensor # divide to keep same output expectation
return output
def forward(self, inputs):
return self.drop_path(inputs)
#def main():
# tmp = paddle.to_tensor(np.random.rand(8, 16, 8, 8), dtype='float32')
# dp = DropPath(0.5)
# out = dp(tmp)
# print(out)
#
#if __name__ == "__main__":
# main()