Skip to content

Latest commit

 

History

History

CrossViT

CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification, arxiv

PaddlePaddle training/validation code and pretrained models for CrossViT.

The official pytorch implementation is here.

This implementation is developed by PPViT.

drawing

CrossVit Model Overview

Update

  • Update (2022-03-28): Code is refactored and bugs are fixed
  • Update (2021-09-27): Model FLOPs and # params are uploaded.
  • Update (2021-09-16): Code is released and ported weights are uploaded.
  • Update (2021-09-22): Support more models eval.

Models Zoo

Model Acc@1 Acc@5 #Params FLOPs Image Size Crop_pct Interpolation Link
cross_vit_tiny_224 73.20 91.90 6.9M 1.3G 224 0.875 bicubic google/baidu
cross_vit_small_224 81.01 95.33 26.7M 5.2G 224 0.875 bicubic google/baidu
cross_vit_base_224 82.12 95.87 104.7M 20.2G 224 0.875 bicubic google/baidu
cross_vit_9_224 73.78 91.93 8.5M 1.6G 224 0.875 bicubic google/baidu
cross_vit_15_224 81.51 95.72 27.4M 5.2G 224 0.875 bicubic google/baidu
cross_vit_18_224 82.29 96.00 43.1M 8.3G 224 0.875 bicubic google/baidu
cross_vit_9_dagger_224 76.92 93.61 8.7M 1.7G 224 0.875 bicubic google/baidu
cross_vit_15_dagger_224 82.23 95.93 28.1M 5.6G 224 0.875 bicubic google/baidu
cross_vit_18_dagger_224 82.51 96.03 44.1M 8.7G 224 0.875 bicubic google/baidu
cross_vit_15_dagger_384 83.75 96.75 28.1M 16.4G 384 1.0 bicubic google/baidu
cross_vit_18_dagger_384 84.17 96.82 44.1M 25.8G 384 1.0 bicubic google/baidu

|

*The results are evaluated on ImageNet2012 validation set.

Data Preparation

ImageNet2012 dataset is used in the following file structure:

│imagenet/
├──train_list.txt
├──val_list.txt
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......
  • train_list.txt: list of relative paths and labels of training images. You can download it from: google/baidu
  • val_list.txt: list of relative paths and labels of validation images. You can download it from: google/baidu

Usage

To use the model with pretrained weights, download the .pdparam weight file and change related file paths in the following python scripts. The model config files are located in ./configs/.

For example, assume weight file is downloaded in ./crossvit_tiny_224.pdparams, to use the crossvit_tiny_224 model in python:

from config import get_config
from crossvit import build_crossvit as build_model
# config files in ./configs/
config = get_config('./configs/crossvit_tiny_224.yaml')
# build model
model = build_model(config)
# load pretrained weights
model_state_dict = paddle.load('./crossvit_tiny_224.pdparams')
model.set_state_dict(model_state_dict)

Evaluation

To evaluate model performance on ImageNet2012, run the following script using command line:

sh run_eval_multi.sh

or

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/crossvit_tiny_224.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./crossvit_tiny_224.pdparams' \
-amp

Note: if you have only 1 GPU, change device number to CUDA_VISIBLE_DEVICES=0 would run the evaluation on single GPU.

Training

To train the model on ImageNet2012, run the following script using command line:

sh run_train_multi.sh

or

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/crossvit_tiny_224.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-amp

Note: it is highly recommanded to run the training using multiple GPUs / multi-node GPUs.

Reference

@article{chen2021crossvit,
  title={Crossvit: Cross-attention multi-scale vision transformer for image classification},
  author={Chen, Chun-Fu and Fan, Quanfu and Panda, Rameswar},
  journal={arXiv preprint arXiv:2103.14899},
  year={2021}
}