Co-Scale Conv-Attentional Image Transformers, arxiv
PaddlePaddle training/validation code and pretrained models for the model released in ICCV2021: CoaT.
The official PyTorch implementation is here.
This implementation is developed by PaddleViT.
- Update (2022-05-16): Code is released and ported weights are uploaded.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
CoaT-Lite Tiny | 77.51 | 93.92 | 5.7M | 1.7G | 224 | 0.9 | bicubic | google/baidu |
CoaT-Lite Mini | 79.10 | 94.61 | 11.0M | 2.1G | 224 | 0.9 | bicubic | google/baidu |
CoaT-Lite Small | 81.83 | 95.58 | 19.8M | 4.2G | 224 | 0.9 | bicubic | google/baidu |
CoaT-Lite Medium | 83.60 | 96.73 | 44.6M | 10.5G | 224 | 0.9 | bicubic | google/baidu |
CoaT Tiny | 78.45 | 94.07 | 7.7M | 4.8G | 224 | 0.9 | bicubic | google/baidu |
CoaT Mini | 81.27 | 95.38 | 14.8M | 7.3G | 224 | 0.9 | bicubic | google/baidu |
CoaT Small | 82.36 | 96.21 | 31.5M | 13.3G | 224 | 0.9 | bicubic | google/baidu |
*The results are evaluated on ImageNet2012 validation set.
ImageNet2012 dataset is used in the following file structure:
│imagenet/
├──train_list.txt
├──val_list.txt
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
train_list.txt
: list of relative paths and labels of training images. You can download it from: google/baiduval_list.txt
: list of relative paths and labels of validation images. You can download it from: google/baidu
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume weight file is downloaded in ./coat_tiny.pdparams
, to use the coat_tiny
model in python:
from config import get_config
from coat import build_coat as build_model
# config files in ./configs/
config = get_config('./configs/coat_tiny.yaml')
# build model
model = build_model(config)
# load pretrained weights
model_state_dict = paddle.load('./coat_tiny.pdparams')
model.set_state_dict(model_state_dict)
To evaluate model performance on ImageNet2012, run the following script using command line:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/coat_tiny.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./coat_tiny.pdparams' \
-amp
Note: if you have only 1 GPU, change device number to
CUDA_VISIBLE_DEVICES=0
would run the evaluation on single GPU.
To train the model on ImageNet2012, run the following script using command line:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/coat_tiny.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-amp
Note: it is highly recommanded to run the training using multiple GPUs / multi-node GPUs.
@InProceedings{Xu_2021_ICCV,
author = {Xu, Weijian and Xu, Yifan and Chang, Tyler and Tu, Zhuowen},
title = {Co-Scale Conv-Attentional Image Transformers},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021},
pages = {9981-9990}
}