-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
327 lines (262 loc) · 14.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
"""
Copyright 2021 Universitat Politècnica de Catalunya
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from __future__ import print_function
import tensorflow as tf
import time
class GNN_Model(tf.keras.Model):
""" Init method for the custom model.
Args:
config (dict): Python dictionary containing the diferent configurations
and hyperparameters.
output_units (int): Output units for the last readout's layer.
Attributes:
config (dict): Python dictionary containing the diferent configurations
and hyperparameters.
link_update (GRUCell): Link GRU Cell used in the Message Passing step.
path_update (GRUCell): Path GRU Cell used in the Message Passing step.
queue_update (GRUCell): Queue GRU Cell used in the Message Passing step.
readout (Keras Model): Readout Neural Network. It expects as input the
path states and outputs the per-path delay.
"""
def __init__(self, config, output_units=1):
super(GNN_Model, self).__init__()
# Configuration dictionary. It contains the needed Hyperparameters for the model.
# All the Hyperparameters can be found in the config.ini file
self.config = config
# GRU Cells used in the Message Passing step
self.path_update = tf.keras.layers.GRUCell(int(self.config['HYPERPARAMETERS']['path_state_dim']))
self.link_update = tf.keras.layers.GRUCell(int(self.config['HYPERPARAMETERS']['link_state_dim']))
self.queue_update = tf.keras.layers.GRUCell(int(self.config['HYPERPARAMETERS']['queue_state_dim']))
# Readout Neural Network. It expects as input the path states and outputs the per-path delay
self.readout = tf.keras.Sequential([
tf.keras.layers.Input(shape=int(self.config['HYPERPARAMETERS']['path_state_dim'])),
tf.keras.layers.Dense(int(self.config['HYPERPARAMETERS']['readout_units']),
activation=tf.nn.selu,
kernel_regularizer=tf.keras.regularizers.l2(
float(self.config['HYPERPARAMETERS']['l2'])),
),
tf.keras.layers.Dense(int(self.config['HYPERPARAMETERS']['readout_units']),
activation=tf.nn.selu,
kernel_regularizer=tf.keras.regularizers.l2(
float(self.config['HYPERPARAMETERS']['l2']))),
tf.keras.layers.Dense(output_units,
kernel_regularizer=tf.keras.regularizers.l2(
float(self.config['HYPERPARAMETERS']['l2_2'])))
])
@tf.function
def call(self, inputs, training=False):
"""This function is execution each time the model is called
Args:
inputs (dict): Features used to make the predictions.
training (bool): Whether the model is train or not. If False, the
model does not update the weights.
Returns:
tensor: A tensor containing the per-path delay.
"""
# Compute the shape for the all-zero tensor for link_state
path_shape = tf.stack([
inputs['n_paths'],
int(self.config['HYPERPARAMETERS']['link_state_dim']) -
2
], axis=0)
# Initialize the initial hidden state for links
path_state = tf.concat([
tf.expand_dims(inputs['traffic'], axis=1),
tf.expand_dims(inputs['packets'], axis=1),
tf.zeros(path_shape)
], axis=1)
# Compute the shape for the all-zero tensor for path_state
link_shape = tf.stack([
inputs['n_links'],
int(self.config['HYPERPARAMETERS']['path_state_dim']) -
int(self.config['DATASET']['num_policies']) -
1
], axis=0)
# Initialize the initial hidden state for paths
link_state = tf.concat([
tf.expand_dims(inputs['capacity'], axis=1),
tf.one_hot(inputs['policy'], int(self.config['DATASET']['num_policies'])),
tf.zeros(link_shape)
], axis=1)
# Compute the shape for the all-zero tensor for path_state
queue_shape = tf.stack([
inputs['n_queues'],
int(self.config['HYPERPARAMETERS']['path_state_dim']) -
int(self.config['DATASET']['max_num_queues']) -
2
], axis=0)
# Initialize the initial hidden state for paths
queue_state = tf.concat([
tf.expand_dims(inputs['size'], axis=1),
tf.one_hot(inputs['priority'], int(self.config['DATASET']['max_num_queues'])),
tf.expand_dims(inputs['weight'], axis=1),
tf.zeros(queue_shape)
], axis=1)
# Iterate t times doing the message passing
for it in range(int(self.config['HYPERPARAMETERS']['t'])):
###################
# LINK AND QUEUE #
# TO PATH #
###################
link_gather = tf.gather(link_state, inputs['link_to_path'])
queue_gather = tf.gather(queue_state, inputs['queue_to_path'])
ids_q = tf.stack([inputs['path_ids'], inputs['l_q_p']], axis=1)
ids_l = tf.stack([inputs['path_ids'], inputs['l_p_s']], axis=1)
max_len = tf.reduce_max(inputs['l_q_p']) + 1
shape = tf.stack([inputs['n_paths'], max_len, int(self.config['HYPERPARAMETERS']['path_state_dim'])])
queue_input = tf.scatter_nd(ids_q, queue_gather, shape)
link_input = tf.scatter_nd(ids_l, link_gather, shape)
lens = tf.math.segment_sum(data=tf.ones_like(inputs['path_ids']),
segment_ids=inputs['path_ids'])
path_gru_rnn = tf.keras.layers.RNN(self.path_update, return_sequences=False)
path_state = path_gru_rnn(inputs=tf.concat([queue_input, link_input], axis=2),
initial_state=path_state,
mask=tf.sequence_mask(lens))
###################
# PATH TO QUEUE #
###################
path_gather = tf.gather(path_state, inputs['path_to_queue'])
path_sum = tf.math.unsorted_segment_sum(path_gather, inputs['sequence_queues'], inputs['n_queues'])
queue_state, _ = self.queue_update(path_sum, [queue_state])
###################
# QUEUE TO LINK #
###################
queue_gather = tf.gather(queue_state, inputs['queue_to_link'])
ids_q = tf.stack([inputs['sequence_links'], inputs['l_q_l']], axis=1)
max_len = tf.reduce_max(inputs['l_q_l']) + 1
shape = tf.stack([inputs['n_links'], max_len, int(self.config['HYPERPARAMETERS']['link_state_dim'])])
queue_input = tf.scatter_nd(ids_q, queue_gather, shape)
lens = tf.math.segment_sum(data=tf.ones_like(inputs['sequence_links']),
segment_ids=inputs['sequence_links'])
link_gru_rnn = tf.keras.layers.RNN(self.link_update, return_sequences=False)
link_state = link_gru_rnn(inputs=queue_input, initial_state=link_state, mask=tf.sequence_mask(lens))
# Call the readout ANN and return its predictions
r = self.readout(path_state, training=training)
return r
def r_squared(labels, predictions):
"""Computes the R^2 score.
Args:
labels (tf.Tensor): True values
labels (tf.Tensor): This is the second item returned from the input_fn passed to train, evaluate, and predict.
If mode is tf.estimator.ModeKeys.PREDICT, labels=None will be passed.
Returns:
tf.Tensor: Mean R^2
"""
total_error = tf.reduce_sum(tf.square(labels - tf.reduce_mean(labels)))
unexplained_error = tf.reduce_sum(tf.square(labels - predictions))
r_sq = 1.0 - tf.truediv(unexplained_error, total_error)
# Needed for tf2 compatibility.
m_r_sq, update_rsq_op = tf.compat.v1.metrics.mean(r_sq)
return m_r_sq, update_rsq_op
def model_fn(features, labels, mode, params):
"""model_fn used by the estimator, which, given inputs and a number of other parameters,
returns the ops necessary to perform train, evaluation, or predictions.
Args:
features (dict): This is the first item returned from the input_fn passed to train, evaluate, and predict.
labels (tf.Tensor): This is the second item returned from the input_fn passed to train, evaluate, and predict.
If mode is tf.estimator.ModeKeys.PREDICT, labels=None will be passed.
mode (tf.estimator.ModeKeys): Specifies if this is train, evaluation or prediction.
params (dict): Dict of hyperparameters. Will receive what is passed to Estimator in params parameter.
Returns:
tf.estimator.EstimatorSpec: Ops and objects returned from a model_fn and passed to an Estimator.
"""
# Create the model.
model = GNN_Model(params)
# start_time = tf.timestamp()
# Execute the call function and obtain the predictions.
predictions = model(features, training=(mode == tf.estimator.ModeKeys.TRAIN))
predictions = tf.squeeze(predictions)
# If we are performing predictions.
if mode == tf.estimator.ModeKeys.PREDICT:
# Return the predicted values.
return tf.estimator.EstimatorSpec(
mode, predictions={
'predictions': predictions
})
# Define the loss function.
loss_function = tf.keras.losses.MeanSquaredError()
# Obtain the regularization loss of the model.
regularization_loss = sum(model.losses)
# Compute the loss defined previously.
loss = loss_function(labels, predictions)
# Compute the total loss.
total_loss = loss + regularization_loss
tf.summary.scalar('loss', loss)
tf.summary.scalar('regularization_loss', regularization_loss)
tf.summary.scalar('total_loss', total_loss)
# If we are performing evaluation.
if mode == tf.estimator.ModeKeys.EVAL:
denormalized_labels = tf.math.exp(labels)
denormalized_predictions = tf.math.exp(predictions)
# Define the different eval metrics
label_mean = tf.keras.metrics.Mean()
_ = label_mean.update_state(labels)
prediction_mean = tf.keras.metrics.Mean()
_ = prediction_mean.update_state(predictions)
mae = tf.keras.metrics.MeanAbsoluteError()
_ = mae.update_state(labels, predictions)
mre = tf.keras.metrics.MeanRelativeError(normalizer=tf.abs(labels))
_ = mre.update_state(labels, predictions)
# Check the eval metrics after denormalizing
denorm_label_mean = tf.keras.metrics.Mean()
_ = denorm_label_mean.update_state(denormalized_labels)
denorm_prediction_mean = tf.keras.metrics.Mean()
_ = denorm_prediction_mean.update_state(denormalized_predictions)
denorm_mae = tf.keras.metrics.MeanAbsoluteError()
_ = denorm_mae.update_state(denormalized_labels, denormalized_predictions)
denorm_mre = tf.keras.metrics.MeanRelativeError(normalizer=denormalized_labels)
_ = denorm_mre.update_state(denormalized_labels, denormalized_predictions)
return tf.estimator.EstimatorSpec(
mode, loss=loss,
eval_metric_ops={
'label/mean': label_mean,
'prediction/mean': prediction_mean,
'mae': mae,
'mre': mre,
'r-squared': r_squared(labels, predictions),
'denorm_label/mean': denorm_label_mean,
'denorm_prediction/mean': denorm_prediction_mean,
'denorm_mae': denorm_mae,
'denorm_mre': denorm_mre,
'denorm_r_squared': r_squared(denormalized_labels, denormalized_predictions)
}
)
# If we are performing train.
assert mode == tf.estimator.ModeKeys.TRAIN
# Compute the gradients.
grads = tf.gradients(total_loss, model.trainable_variables)
summaries = [tf.summary.histogram(var.op.name, var) for var in model.trainable_variables]
summaries += [tf.summary.histogram(g.op.name, g) for g in grads if g is not None]
# Define an exponential decay schedule.
decayed_lr = tf.keras.optimizers.schedules.ExponentialDecay(float(params['HYPERPARAMETERS']['learning_rate']),
int(params['HYPERPARAMETERS']['decay_steps']),
float(params['HYPERPARAMETERS']['decay_rate']),
staircase=True)
# Define an Adam optimizer using the defined exponential decay.
optimizer = tf.keras.optimizers.Adam(learning_rate=decayed_lr)
# Manually assign tf.compat.v1.global_step variable to optimizer.iterations
# to make tf.compat.v1.train.global_step increased correctly.
optimizer.iterations = tf.compat.v1.train.get_or_create_global_step()
# Apply the processed gradients using the optimizer.
train_op = optimizer.apply_gradients(zip(grads, model.trainable_variables))
# Define the logging hook. It returns the loss, the regularization loss and the
# total loss every 10 iterations.
logging_hook = tf.estimator.LoggingTensorHook(
{"Loss": loss,
"Regularization loss": regularization_loss,
"Total loss": total_loss}, every_n_iter=10)
return tf.estimator.EstimatorSpec(mode,
loss=loss,
train_op=train_op,
training_hooks=[logging_hook]
)