-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscalable_tgn_main_node_affinity_prediction.py
242 lines (174 loc) · 8.87 KB
/
scalable_tgn_main_node_affinity_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import dgl
import math
import wandb
import torch
import random
import argparse
import numpy as np
from tqdm import tqdm
from model.config import cfg
from deepsnap.graph import Graph
from model.Logger import getLogger
from dataset_prep import load, load_r,load_r_without_node
from model.utils import create_optimizer
from deepsnap.dataset import GraphDataset
import warnings
import time
warnings.filterwarnings("ignore")
# trade
#
# Best hyperparameters: {'a': 0.034143450512559376, 'lr': 0.00886572355558703, 'n': 26}
def negative_sampling(edges, max_node_id):
edges = edges.t().tolist()
edge_set = set(tuple(edge) for edge in edges)
negative_edges = []
max_node_id = max(max(u, v) for u, v in edges)
for u, _ in edges:
while True:
# Find a random node v
u_new = random.randint(0, max_node_id)
v_new = random.randint(0, max_node_id)
if (u_new, v_new) not in edge_set:
negative_edges.append([u_new, v_new])
break
all_edges = edges + negative_edges
labels = [1] * len(edges) + [0] * len(negative_edges)
return all_edges, labels
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='trade', help='Dataset')
parser.add_argument('--cuda_device', type=int,
default=0 ,help='Cuda device no -1')
parser.add_argument('--seed', type=int, default=2023, help='split seed')
parser.add_argument('--repeat', type=int, default=1, help='number of repeat model')
parser.add_argument('--epochs', type=int, default=100,
help='number of epochs to train.')
parser.add_argument('--out_dim', type=int, default=512,
help='model output dimension.')
parser.add_argument('--optimizer', type=str, default='adam',
help='optimizer type')
parser.add_argument('--lr', type=float, default= 0.002398097457458238,
help='initial learning rate.')
parser.add_argument('--weight_decay', type=float, default=1e-4,
help='weight decay (L2 loss on parameters).')
parser.add_argument('--a', type=float, default= 0.0009433377558260674,
help='The parameter of time encoding')
parser.add_argument('--weight_share', type=float, default=10,
help='The weight of adaptive learning rate component accumulation')
parser.add_argument('--batch_size', type=int, default=128,
help='The weight of adaptive learning rate component accumulation')
parser.add_argument('--hop', type=float, default=1,
help='number of hop used')
parser.add_argument('--b', type=float, default=12,
help='parameter of normalization')
parser.add_argument('--n', type=int, default=5,
help='number of historical length used')
parser.add_argument('--fusion', type=str, default='t2v',
help='ways to fuse temporal and structural information')
parser.add_argument('--recursive_sum', type=str, default='False',
help='ways to recursively sum')
parser.add_argument('--time_rate', type=int, default=0.05,
help='ways to recursively sum')
parser.add_argument('--base_value', type=int, default=1e-9,
help='ways to recursively sum')
parser.add_argument('--feat_repeat', type=int, default=1,
help='if the edge feature == 1 , repreat for n times')
args = parser.parse_args()
logger = getLogger(cfg.log_path)
graphs, e_feat, e_time,n_node, n_label = load_r_without_node(args.dataset)
num_class = list(n_label[list(n_label)[0]].values())[0].shape[0]
# if e_feat[0].shape[1] == 1:
# for i,e in enumerate(e_feat):
# e= np.repeat(e , 4, axis=1)
# e_feat[i] = e
# n_dim = n_feat[0].shape[1]
# n_node = n_feat[0].shape[0]
#node_feature = torch.zeros(n_node,n_node)
if args.dataset == 'trade':
node_feature = torch.eye(n_node)
if args.dataset == 'genre':
node_feature = torch.rand(n_node,128)
else:
node_feature = torch.rand(n_node,128)
device = torch.device(f'cuda:{args.cuda_device}' if args.cuda_device >= 0 else 'cpu')
all_mrr_avg = 0.0
best_mrr = 0.0
best_model = 0
all_ndcg = 0
all_mse = 0
all_auc = 0
all_start_time = time.time()
for rep in range(args.repeat):
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
graph_l = []
# Data set processing
for idx, graph in tqdm(enumerate(graphs)):
graph_d = dgl.from_scipy(graph)
graph_d.edge_feature = torch.Tensor(e_feat[idx]).t()
graph_d.edge_time = torch.Tensor(e_time[idx])
# if n_feat[idx].shape[0] != n_node or n_feat[idx].shape[1] != n_dim:
# n_feat_t = graph_l[idx - 1].node_feature
# graph_d.node_feature = torch.Tensor(n_feat_t)
# else:
graph_d.node_feature = torch.Tensor(node_feature)
#graph_d = dgl.remove_self_loop(graph_d)
#graph_d = dgl.add_self_loop(graph_d)
edges = graph_d.edges()
row = edges[0].numpy()
col = edges[1].numpy()
# Negative sample sampling 1:1
n_e = graph_d.num_edges()
# Edge label
y_pos = np.ones(shape=(n_e,))
y_neg = np.zeros(shape=(n_e,))
y = list(y_pos) + list(y_neg)
edge_label_index = list()
edge_label_index.append(row.tolist()[:n_e])
edge_label_index.append(col.tolist()[:n_e])
graph_d.edge_label = torch.Tensor(y)
graph_d.edge_label_index = torch.LongTensor(edge_label_index)
graph_l.append(graph_d)
if args.fusion == 'v2t':
from scalable_tgn_affine_v2t_chunk import train_scalable_tgn,NodePredictor,Encoder
else:
from scalable_tgn_node_affinity_prediction import train_scalable_tgn,NodePredictor,Encoder
if args.dataset in ['reddit_title','USLegis','UNovte','SocialEvo','trade','genre','token','reddit']:
#model = NodePredictor(graph_l[idx].edge_feature.shape[1]+graph_l[idx].node_feature.shape[1],128,num_class).to(device)
model = NodePredictor(graph_l[idx].node_feature.shape[1],128,num_class).to(device)
model_transformer = Encoder(embed_dim_1=graph_l[idx].node_feature.shape[1], embed_dim_2=graph_l[idx].edge_feature.shape[1]+graph_l[idx].node_feature.shape[1],d_model=64,
d_inner=graph_l[idx].edge_feature.shape[1]+graph_l[idx].node_feature.shape[1], n_layers=1, n_head=8, d_k=64, d_v=64,
dropout=0.1,device=device).to(device)
else:
model = NodePredictor(graph_l[idx].node_feature.shape[1],64,num_class).to(device)
model_transformer = Encoder( embed_dim_1=graph_l[idx].edge_feature.shape[1], embed_dim_2=graph_l[idx].edge_feature.shape[1],d_model=64,
d_inner=graph_l[idx].edge_feature.shape[1], n_layers=1, n_head=8, d_k=64, d_v=64,
dropout=0.1,device=device).to(device)
model.train()
model_transformer.train()
total_params_trm = sum(p.numel() for p in model_transformer.parameters())
total_params_linear = sum(p.numel() for p in model.parameters())
print(f"Total number of transformer parameters is: {total_params_trm}")
print(f"Total number of predit_layer parameters is: {total_params_linear}")
print(total_params_trm+total_params_linear)
# model_transformer_1.train()
# model_transformer_2.train()
train_n = math.ceil(len(graph_l) * 0.7)
val_n = train_n+math.ceil(len(graph_l) * 0.1)
test_n = train_n+1
parameters = list(model.parameters()) + list(model_transformer.parameters())
optimizer = create_optimizer(args.optimizer, parameters, args.lr, args.weight_decay)
start_time = time.time()
avg_ndcg,avg_mse = train_scalable_tgn(model, model_transformer,optimizer, device, graph_l,n_label, logger,train_n,val_n,test_n,args)
#model.load_state_dict(best_param['best_state'])
end_time = time.time()
print(end_time-start_time)
all_ndcg+=avg_ndcg
all_mse+=avg_mse
all_ndcg = all_ndcg/ args.repeat
all_mse = all_mse/ args.repeat
all_end_time = (time.time()-all_start_time)/args.repeat
logger.info(f"All ndcg: {all_mse}")
logger.info(f"All mse: {all_auc}")
logger.info(f"All time: {all_end_time}")