-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprediction.py
33 lines (26 loc) · 953 Bytes
/
prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import sys
import os
import io
import ML2
import ML_TEST
import numpy as np
import pandas as pd
sys.stdout = io.TextIOWrapper(sys.stdout.detach(), encoding = 'utf-8')
sys.stderr = io.TextIOWrapper(sys.stderr.detach(), encoding = 'utf-8')
frame =[]
dataset = ML_TEST.prepare_data()
for i in range(1000):
final_test_dataset , final_test_labels = ML_TEST.get_random_sample('test')
trans_dataset = np.transpose(final_test_dataset)
frame.append(final_test_labels)
np.savetxt("c:/project2/testdata/"+str(i)+".csv",final_test_dataset,delimiter=",")
np.savetxt("c:/project2/testdata/labels.csv",frame,delimiter=",")
#print(final_dataset.shape() , data_labels.shape() )
#print(frame)
'''
def newdata():
dataset = ML2.prepare_data()
for i in range(1,10000):
final_dataset, data_labels = ML2.get_random_sample('train')
return final_dataset,data_labels
'''