-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpaper2.py
35 lines (26 loc) · 900 Bytes
/
paper2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import librosa
import numpy as np
import os
import sys
import io
import librosa
import librosa.display
import IPython.display
from librosa.feature import melspectrogram
from scipy.fftpack import fft
import matplotlib.pylab as plt
sys.stdout = io.TextIOWrapper(sys.stdout.detach(), encoding = 'utf-8')
sys.stderr = io.TextIOWrapper(sys.stderr.detach(), encoding = 'utf-8')
y,sr=librosa.load('C:/project1/train/audio/ZOOM0021 .wav')
IPython.display.Audio(data=y,rate=sr)
D = librosa.amplitude_to_db(librosa.stft(y[:1024]),ref = np.max)
plt.plot(D.flatten())
plt.show()
S = librosa.feature.melspectrogram(y,sr=sr,n_mels=128)
log_S = librosa.power_to_db(S, ref=np.max)
plt.figure(figsize=(12,4))
librosa.display.specshow(log_S,sr=sr,x_axis='time',y_axis='mel')
plt.title('mel power spectrogram')
plt.colorbar(format='%+02.0f dB')
plt.tight_layout()
plt.show()